
Form 836 (7/06)

LA-UR-
Approved for public release;
distribution is unlimited.

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Title:

Author(s):

Intended for:

11-11980

Portability and Performance for Visualization and Analysis
Operators Using the Data-Parallel PISTON Framework

Christopher Sewell
Li-ta Lo
James Ahrens

Many-Core Library Tutorial and Code Sprint, September
19-20, 2012

Portability and Performance f
Operators Using the Data POperators Using the Data-P

Chris S
Li-TaLi Ta

James A
Los Alamos Natio

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

for Visualization and Analysis
Parallel PISTON FrameworkParallel PISTON Framework

Sewell
a Lo a Lo
Ahrens
onal Laboratory

LA-UR-11-11980

OutO

● MotivationMotivation

– Portability and performance of visualization
current and next-generation supercomputers

● Introduction to data-parallel programming a

● Implementation of visualization operators

– Isosurface, Cut Surfaces, Threshold

● Current target architectures and performanc

CUDA/N idi GPU & O MP/M l i – CUDA/Nvidia GPU & OpenMP/Multi-core

● On-going work

OpenCL backend unstructured grids more o– OpenCL backend, unstructured grids, more o
parallelism, curvilinear coordiantes

● Tutorials

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

tline

n and analysis operations on
s

and the Thrust library

ce

himachines

operators ParaView integration multi node operators, ParaView integration, multi-node

LA-UR-11-11980

Motivation / RM v /

● Current production visualization Cu e p oduc o v sua a o
software does not take full
advantage of acceleration hardwa

d/ lti hit tand/or multi-core architecture

● Vtk, ParaView, Visit

● Research on accelerating
visualization operations are mostly
hardware-specific; few were hardware specific; few were
integrated in visualization software

● CUDA SDK demo

● Dyken, Ziegler, “High-speed
Marching Cubes using Histogram
P id ” E hi 2007

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Pyramids”, Eurographics 2007.

Related WorkW

● Most work in portability and

are

Mos wo po ab y a d
abstraction layers/languages
are not ready (yet)...

● Can we accelerate our
visualization software with
something that is based on

something that is based on
“proven” technology and
portable across different

e architectures?

● Data parallel libraries

– NVidia Thrust library

LA-UR-11-11980

Brief Introduction to Dat
d Tand T

● What is data parallelism?

● When independent processors
performs the same task on performs the same task on
different pieces of data

● Due to the massive data sizes we
expect to be simulating we expect
data parallelism to be a good way
to exploit parallelism on current
and next generation architectures

● “The data parallel bible” -
Blelloch, “Vector Models for Data ,
Parallel Computing”

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

a-Parallel Programming
ThThrust

● What is Thrust?

● Thrust is a NVidia C++ template
library for CUDA It can also target library for CUDA. It can also target
OpenMP and we are creating new
backends to target other
architecturesarchitectures

● Thrust allows you to program using
an interface similar the C++
St d d T l t Lib (STL)Standard Template Library (STL)

● Most of the STL algorithms in Thrust
are data parallel

LA-UR-11-11980

Videos of PISTV S

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

TON in ActionON

LA-UR-11-11980

Brief Introduction to Dat
d Tand T

● Why use Thrust instead of CUDA?W y use us s ead o CU ?

● Thrust offers a data parallel abst
abstraction will be portable to fut

● Specifically, in this talk we will sho
running on NVidia GPUs and mult

● What data structures does Thrust p

● Currently Thrust provides thrust::ho
which are analogous to std::vector
memory.

● These vector data structures simpl● These vector data structures simpl
transferring data between the hos

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

a-Parallel Programming
ThThrust

traction. We believe code written in this
ture systems.

ow the same algorithm written in Thrust
ti-core CPUs.

provide?

ost_vector and thrust::device_vector,
/r in the STL and reside in the host/device

ify memory management and ify memory management and
st and device.

LA-UR-11-11980

Brief Introduction to Dat
d Tand T

● Sorts

● Transforms

What algorithms does Thrust provide?

● Transforms

● Reductions

● Scans

● Binary searches

● Stream compactions

● Scatters / gathers

Challenge: Write operators in terms of g p
these primitives only

Reward: Efficient, portable code

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

a-Parallel Programming
ThThrust

LA-UR-11-11980

Isosurface with MarchingM g

Cl if ll ll b t f● Classify all cells by transform

● Use copy_if to compact valid cells.

● For each valid cell, generate same
number of geometries with flags.

Use copy if to do stream compaction ● Use copy_if to do stream compaction
on vertices.

● This approach is too slow, more than ● This approach is too slow, more than
50% of time was spent moving huge
amount of data in global memory.

● Can we avoid calling copy_if and
eliminate global memory movement?

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

g Cube – the Naive Wayg C N v W y

LA-UR-11-11980

Isosurface with MarchinM

Inspired by HistoPyramid● Inspired by HistoPyramid

● The filter is essentially a mapping
from input cell id to output vertex idfrom input cell id to output vertex id

● Is there a “reverse” mapping?

If there is a reverse mapping the ● If there is a reverse mapping, the
filter can be very “lazy”

● Given an output vertex id, we onlyG ve a ou pu ve e d, we y
apply operations on the cell that
would generate the vertex

● Actually for a range of output vertex
ids

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

ng Cube – Optimizationg C Op

0 1 2 543 60 1 2 543 6

0 4 80

1
2 3 4

5
6

7

8
9

LA-UR-11-11980

Isosurface with MarchM

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

hing Cubes Algorithmg C g

LA-UR-11-11980

Cut SuC S

All h i d b ● All the vertices generated by
marching cube are on the cell edges.

● They have only one degree of ● They have only one degree of
freedom, not three.

● 1D interpolation only, no need to do p y,
trilinear interpolation on scalar field.

● Two scalar fields, one for generating
geometry (cut surface) the other for
scalar interpolation.

Less than 10 LOC change negligible ● Less than 10 LOC change, negligible
performance impact to isosurface.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

rfaces

r

s
t

LA-UR-11-11980

Thres

● Again, very similar to marching ga , ve y s a o a c g
cube

● Classify cells, stream compact
valid cells and generate
geometries for valid cells.

O ti i ti h t d th ● Optimization: what does the
“inside” of a brick look like? Do
we even care?

● Additional passes of cell
classification and stream

ti t “i t i compaction to remove “interior
cells”

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

shold

LA-UR-11-11980

Additional

Blelloch’s “Vector Models for Data● Blelloch s Vector Models for Data
Data Structures
Graphs: Neighbor reducing, distributing excess across edges
Trees: Leaffix and rootfix operations, tree manipulations
Multidimensional arrays

Computational GeometryComputational Geometry
Generalized binary search
k‐D tree
Closest pair
Quickhull
Merge Hull

● Our on-going work: glyphs; render
casting version with k-D Tree); stati

A l ï l i h ll ● At least a naïve algorithm usually p
transform and for_each pri
efficient global communication usuag

● Efficient algorithms will still require
across platforms

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

OperatorsOp

Parallel Computing”-Parallel Computing
s

Graph Algorithms
Minimum spanning tree
Maximum flow
Maximal independent set

Numerical AlgorithmsNumerical Algorithms
Matrix‐vector multiplication
Linear‐systems solver
Simplex
Outer product
Sparse‐matrix multiplication

ring (rasterizing version and ray-
istics with reduce primitive

ibl i h fl ibili f possible using the flexibility of
mitives with user-defined functors;
ally requires use of scansy q

e clever design, but will be beneficial

LA-UR-11-11980

PISTON CUDA BacS ON CU

Limited performance degradation ● Limited performance degradation
relative to native CUDA optimized
code

● PISTON

● Limited use of shared/texture memory
d bilidue to portability

● NVIDIA CUDA Demo

W k l ith d t t ith ● Works only with data set with power
of 2 per dimension, allowing use of
shift instead of integer division

M i ffi i f ● Memory inefficient; runs out of
texture/global memory when data
size is larger than 512^3

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

ckend Performance

LA-UR-11-11980

PISTON OpenMP BaS ON Op M

C il i #d fi / D i h ● Compile time #define/-D switches
between backends

● Wrote our own parallel scan ● Wrote our own parallel scan
implementation for Thrust OpenMP
backend

● Significantly better performance
than both single process and
parallel VTKparallel VTK

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

ackend Performance

LA-UR-11-11980

PISTON OpenMP SS ON Op M S

● Significantly better scalability in
term of # of cores than parallel
VTK

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

caling Performanceg

LA-UR-11-11980

PISTON Compute aS ON C p

● Compute and render results

● CUDA and OpenMP backends

● CUDA/OpenGL interop

● Platform specific, non-portable

O d l● Output geometries directly into
OpenGL VBO

● Avoid round trip between device and
host memory movement

● Vastly improves rendering
performance and reduces memory
footprint

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

and Render Results

LA-UR-11-11980

PISTON VisualizS ON V

Three fundamental visualization ● Three fundamental visualization
operations

● All based on the same basic
data-parallelism

● Very similar performance
characteristics

● Cut plane is the fastest since it
generates 2D planesgenerates 2D planes

● Threshold comes next because
there is no interpolation for
scalar nor position

● Isosurface is actually the most
complicated operator

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

co p ca ed ope a o

ation OperatorsOp

LA-UR-11-11980

OpenCLOp C

● Motivation: Support for compiling visupp p g
of additional GPU and CPU architect

● Challenges

● OpenCL is not built into Thrust

● OpenCL is based on C99, making sup

● OpenCL compiles kernels from strings

● Current Approach

● Pre-processor extracts operators from use

● At run-time, our Thrust-like backend comb
OpenCL implementations of data-paralleOpenCL implementations of data-paralle

● Our Thrust-like backend uses run-time typ
functor calls, substituting for key words in

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

● Kernel source only needs to be compiled

Backend

ualization operators for a wide variety p y
ures

pport for C++ features difficult

s at run-time rather than from source files

er-written functors and outputs them to .cl files

bines these user-derived .cl files with its own native
el primitives into kernel stringsel primitives into kernel strings

pe information to handle simple templating and
 string

LA-UR-11-11980

once for each time it appears in code

OpenCL BacOp C

● Preliminary Resultse a y esu s

● Successfully implemented isosurfac
with code almost identical to that
OpenMP backends

● With interop on AMD FirePro V78
6 fps for 256^3 data set (2 fps w6 fps for 256^3 data set (2 fps w

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

ckend Results

ce and cut plane operators in OpenCL
used for the Thrust-based CUDA and

800 (1440 streams), we can run at about
without interop)without interop)

LA-UR-11-11980

On-going andO g g

M h T h d f ● Marching Tetrahedra: a first step tow

● Integration with ParaView

● Multi-node parallelism with VTK/Par

● More operators, more backends

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

d Future WorkW

d f d dwards support for unstructured grids

raView’s MPI constructs

LA-UR-11-11980

Marching TM g

Current procedure● Current procedure

● Tetrahedralize uniform grid or unst

G t i f t b● Generate isosurface geometry ba

● Next step: Develop PISTON operat
compute isosurface directly on AMRcompute isosurface directly on AMR

● Polytypic algorithm design

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Tetrahedra

tructured grid (e.g., AMR mesh)

d l k t bl f t t h d l llsed on look-up table for tetrahedral cells

tor to tetrahedralize grids, and/or to
R grid R grid

LA-UR-11-11980

Integration wg

● Filters that use PISTON data types and alg

● Utility filters interconvert between standard
(thrust device vectors)

● Can chain PISTON filters; soon will support

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

with ParaViewV

gorithms integrated into ParaView prototype

d VTK data format and PISTON data format

 interop for on-card rendering

LA-UR-11-11980

Inter-node

● Domain partitioned by VTK’s MPI lo a pa o ed by V s M

● Each node then uses PISTON filters
the domain

● Results combined by VTK’s composi

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Parallelism

ibrariesb a es

s to compute results for its portion of

itors

LA-UR-11-11980

Additional

● Current prototypes

● Glyphs

● Renderer – rasterizing and ray-castin
generation of images on systems with

● Halo finder for cosmology simulations

● Ultimately want to support a large subset

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

OperatorsOp

ng versions (using K-D Tree), allowing the
hout OpenGL

s

t of ParaView filters, plus analysis operators

LA-UR-11-11980

Curvilinear CC v C

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

CoordinatesC

LA-UR-11-11980

Open-SourOp S

● Open-source release

● Tarball: http://viz.lanl.gov/projeca ba : p://v . a .gov/p ojec

● Repository: https://github.com/los

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

rce Release

cts/PISTON.htmlc s/ S ON.

salamos/PISTON

LA-UR-11-11980

Acknowledgmentg

● The work on PISTON was funded b
Thuc Hoang, national program man
Daniel Los Alamos program manaDaniel, Los Alamos program mana

● For more information, see
http://viz.lanl.gov/projects/PIShttp://viz.lanl.gov/projects/PIS

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

ts and Resources

by the NNSA ASC CCSE Program,
nager, Bob Webster and David
gersgers

STON.htmlSTON.html

LA-UR-11-11980

Tuto

Be a Thrust user● Be a Thrust user

● Thrust QuickStartGuide examples

● Be a PISTON user● Be a PISTON user

● tutorial1{OMP/GPU}: create a tangle fie

● demo{OMP/GPU}: load a VTK structuredde o{OM /G U} oad a V s uc u ed
isosurface, cut plane, or threshold operat

● Be a PISTON developer

● tutorial2{OMP/GPU}: write a simple sim
operator (glyphs) using Thrust primitives,
interop with CUDA)

● Be a PISTON algorithm designer

● tutorial3{OMP/GPU}: use data parallel

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

rials

eld and apply the PISTON isosurface operator

d grid from a file and apply the PISTON d g d o a e a d app y e S ON
tor

ulation (boid flocking) and a simple visualization
 and chain them together (optionally using

primitives to design a KD-tree algorithm

LA-UR-11-11980

PISTON vS ON v

● Thrust provides:● Thrust provides:

● An STL-like interface for memory
data-parallel algorithmsp g

● Backend implementations of the d
well as lower-quality implementat

● PISTON provides:

● A library of visualization and ana

● A data model for scalar fields (e.
grids in-progress)

● PISTON enhances:

● Non-CUDA backends
I f di ib d

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Interface to support distributed m

vs. Thrustv

management (host/device vectors) and

data-parallel algorithms for CUDA, as
tions for OpenMP and TBB

alysis operators implemented using Thrust

g., VTK structured grids; unstructured

 i

LA-UR-11-11980

emory operations

KD-T

10

8

9

10

6

7

4

5

2

2

3

0

0

1

0 1 2 3 4

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Tree

4

5
1

3

7

6

7

5 6 7 8 9 10

LA-UR-11-11980

KD Tree: OO

Point Ids

computeGlobalRanks 0 1 2 3 4 5 6 7

computeFlags F T F F T F T TcomputeFlags F T F F T F T T

segmentedSplit 0 2 3 5 1 4 6 7

0 0 0 0 1 1 1 1 F F F F T T T T

Le
ve
l 1

renumberRanks

computeFlags F F T T T T F F

segmentedSplit 0 2 3 5 6 7 1 4

0 0 1 1 2 2 3 3 F F T T F F T T Le
ve
l 2

renumberRanks

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

OverviewOv v

 X Ranks Y Ranks

 1 6 0 2 7 3 4 5 0 5 2 3 7 6 4 1

F T F F T F T T F T F F T F T T F T F F T F T T F T F F T F T T

 1 0 2 3 6 7 4 5 0 2 3 6 5 7 4 1

 F F F F T T T T F F F F T T T T

1 0 2 3 2 3 0 1 0 1 2 3 2 3 1 0

 F F T T T T F F F F T T T T F F

 1 0 2 3 0 1 2 3 0 1 2 3 1 0 2 3

 F F T T F F T T F F T T F F T T

1 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1

LA-UR-11-11980

KD Tree: compup

A Input coordinates 2.9 8.9 2.4 6

B CountingIterator(0) 0 1 2

C sort by key(A B) 2 4 2 9 6 4 6C sort by key(A,B) 2.4 2.9 6.4 6

2 0 3

D scatter(B,C) 1 6 0

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

uteGlobalRanksG

6.4 9.3 6.9 7.5 7.6

 3 4 5 6 7

6 9 7 5 7 6 8 9 9 36.9 7.5 7.6 8.9 9.3

 5 6 7 1 4

 2 7 3 4 5

LA-UR-11-11980

KD Tree: co

A Input ranks

B Input segmentIds

C CountingIterator(1)C CountingIterator(1)

D Reverse inclusive scan by key(B,C,
// # elements in segment

E transform(E[i]=D[i]/2)
// # median index

F transform(F[i]=A[i]>=E[i])

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

mputeFlagsp g

 1 6 0 2 7 3 4 5

0 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

max) 8 8 8 8 8 8 8 8

 4 4 4 4 4 4 4 4

 F T F F T F T T

LA-UR-11-11980

KD Tree: segg

A Input pointIds

B Input flags

C Input segmentIds

D exclusive_scan_by_key(C,B)
// total number of true flags preceding

E CountingIterator(0)

F inclusive_scan_by_key(C,E,min)
// total number of elements in previous

G CountingIterator(1)

H Reverse inclusive_scan_by_key(C,G,max)
// index of last element in its segment

I inclusive_scan_by_key(C,inverse(B))
// total number of false flags so far i

J transform(J[i]=(if(B[i]) F[i]+I[H[i]-1]

K scatter(A,J)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

gmentedSplitg Sp

0 2 3 5 1 4 6 7

 F F T T T T F F

0 0 0 0 1 1 1 1

 0 0 0 1 0 1 2 2
in segment

 0 1 2 3 4 5 6 7

 0 0 0 0 4 4 4 4
segments

 1 2 3 4 5 6 7 8

 4 4 4 4 8 8 8 8
(+1)

 1 2 2 2 0 0 1 2
n segment

+D[i] else F[i]+I[i]-1)) 0 1 2 3 6 7 4 5

 0 2 3 5 6 7 1 4

LA-UR-11-11980

KD Tree: ren

A Input ranks

B Input flags

C Input segmentIds

D ConstantIterator(1)

E exclusive_scan_by_key(C,D)

F scatter(E,A)

G scatter(B,A)

H segmentedSplit(F G)H segmentedSplit(F,G)

I CountingIterator(0)

J inclusive scan by key(C,I,min) y y
// total number of elements in pre

K transform(H+J)

L tt (E K)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

L scatter(E,K)

numberRanks

 0 2 3 6 5 7 4 1

 F F F F T T T T

0 0 0 0 1 1 1 1

 1 1 1 1 1 1 1 1

 0 1 2 3 0 1 2 3

 0 3 1 2 2 0 3 1

 F T F F T T F T

0 1 2 3 3 2 0 1 0 1 2 3 3 2 0 1

 0 1 2 3 4 5 6 7

 0 0 0 0 4 4 4 4
evious segments

 0 1 2 3 7 6 4 5

0 1 2 3 2 3 1 0

LA-UR-11-11980

 0 1 2 3 2 3 1 0

KD Tree: renumberRan

A Input ranks

B Input flags

C Input segmentIds

D Input pre-split segmentIds

E CountingIterator(0)

F inclusive_scan_by_key(D,E,min)

G transform(A+F)

H ConstantIterator(1)

I exclusive_scan_by_key(C,H)

J scatter(I,G)

K scatter(B,G)

L segmentedSplit(J,K,C)L segmentedSplit(J,K,C)

M inclusive_scan_by_key(C,E,min)

N transform(L+M)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

O scatter(I,N)

ks (further segmented)(g)

 0 1 2 3 1 0 2 3

 F F T T F F T T

0 0 1 1 2 2 3 3

0 0 0 0 1 1 1 1

 0 1 2 3 4 5 6 7

 0 0 0 0 4 4 4 4

 0 1 2 3 5 4 6 7

 1 1 1 1 1 1 1 1

 0 1 0 1 0 1 0 1

 0 1 0 1 1 0 0 1

 F F T T F F T T

0 1 0 1 1 0 0 1 0 1 0 1 1 0 0 1

 0 0 2 2 4 4 6 6

 0 1 2 3 5 4 6 7

LA-UR-11-11980

 0 1 0 1 1 0 0 1

OpenCL Op C

M i i S f ili ● Motivation: Support for compiling
variety of additional GPU and CP

Ch ll● Challenges

● OpenCL is not built into Thrust, re
scratchscratch

● OpenCL is based on C99, making
C++ features (templates, functors

● OpenCL compiles kernels from str
rather than directly compiling C c
compile timecompile-time

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Backend

i li i f id visualization operators for a wide
PU architectures

quiring us to create a new backend from

g it difficult to support
s, iterators, etc.) integral to Thrust

rings in the host language at run-time
code embedded in the host language at

LA-UR-11-11980

OpenCL Backend:OpenCL Backend:

PISTON id Th t lik lib f i l d● PISTON provides a Thrust-like library of include
that can read and write data to the device usin
parallel primitives (scan, transform, etc.) in .cl fil
defined functions

● User writes an operator in C++, making calls to
optionally passing user-defined functors as argu

● PISTON pre-processor extracts operators (which
and outputs them to .cl files as functions named

● At run-time, PISTON backend wrapper functions, pp
data-parallel primitive .cl file and the pre-proc
defined function calls with the appropriate func
of the functor argument) and key words for dat

l d d) d k templated instantiation data types), and make c

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

 Prototype Design Prototype Design

 fil (“l th t”) th t i l t h t/d i t e files (“lathrust”) that implement host/device vectors
g OpenCL, and OpenCL-native code for basic data-
les, with keywords as placeholders for calls to user-

o lathrust wrappers for the data-parallel primitives,
uments

h must be C99-compliant) from user-defined functors
according to the class name of their functor

s create a string by concatenating the contents of the g y g
essor-generated .cl file, replace key words for user-
tion name (based on the run-time type information
ta types with actual data types (based on the

ll O CL b ld d h k lcalls to OpenCL to build and execute the kernel

LA-UR-11-11980

OpenCL Backend
util_math.cl

...
__inline__ float lerp(float a, float b, float t)
{
return a + t*(b-a);

transform.cl

__kernel void transform(__global T_TYPE* input, __global T_TYPE* output)
{

unsigned int i = get_global_id(0);
t t[i] USER OPERATOR(i t[i])

}

lat

output[i] = USER_OPERATOR(input[i]);
}

myOperator.inl

template <typename InputIterator>
class myOperator
{{
public:

typedef typename std::iterator_traits<InputIterator>::value_type value_type;
InputIterator input, temp, output; int n;
myOperator(InputIterator input, int n) : input(input), n(n) { }

void operator()()
{

lathrust::transform(input begin() temp begin() n new doubleIt());lathrust transform(input.begin(), temp.begin(), n, new doubleIt());

lathrust::transform(temp.begin(), output.begin(), n, new tripleIt());
}

struct doubleIt : public lathrust::unary_function
{

doubleIt() { }

user.cl

value_type doubleIt(
{

value_type operator()(value_type value)
{

return 2*value;
}

};

struct tripleIt : public lathrust::unary_function
{

{
return 2*value;

}

value_type tripleIt()(
{

return 3*value;
}

Pre-processor

tripleIt() { }

value_type operator()(value_type value)
{

return 3*value;
}

};
};

: Simple Example
kernel_source

“...

__inline__ float lerp(float a, float b, float t)
{{
return a + t*(b-a);

}

int doubleIt()(int value)
{

return 2*value;
}

thrust backend

__kernel void transform(__global int* input, __global int* output)
{

unsigned int i = get_global_id(0);
output[i] = doubleIt(input[i]);

}

”

Compiled Kernel

Compiled Kernel

lathrust backend

clCreateProgramWithSource; clBuildProgram

()(value_type value)

kernel_source

“...

__inline__ float lerp(float a, float b, float t)
{

t + t (b);

lathrust backend

(value_type value)

return a + t*(b-a);
}

int tripleIt()(int value)
{

return 3*value;
}

kernel void transform(global int* input global int* output)__kernel void transform(__global int* input, __global int* output)
{

unsigned int i = get_global_id(0);
output[i] = tripleIt(input[i]);

}

”

OpenCL Backend:Op C

Th PISTON b k d id th O● The PISTON backend can provide the Op
defined functor with access to the functor
in a struct and passing it to the OpenCL f

● Large functor data fields are passed sep
in the OpenCL data-parallel primitive im
parameters passed to the kernel and on

● Permutation iterators are similarly implem
kernel and replacing keywords in the Op
permutation fieldpermutation field

● The kernel source code is the same betwe
(even though the data it is sent may diffe
performance once at the beginning for e
compiled kernel reused whenever that ca

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

: Advanced Topicsv p

CL f ti t d f th penCL function generated from the user-
r data by packaging the functor's data fields
function

parately, and the backend replaces keywords
plementations to extend the set of
to the user-defined function

mented by passing an additional field to the
penCL code with indexing into the

een executions of the same line of host code
er), so kernel compilation can be
ach call of an lathrust wrapper, and the

all is executed

LA-UR-11-11980

OpenCL Backend:
util math cl

t f l

util_math.cl

...
__inline__ float lerp(float a, float b, float t)
{
return a + t*(b-a);

} lathrust backend

transform.cl

__kernel void transform(__global T_TYPE* input, __global T_TYPE* output,
__global void* vstate FIELD_PARAMETERS)

{
unsigned int i = get_global_id(0);
output[i] = USER_OPERATOR(i, input[i], vstate PASS_FIELDS);

}

myOperator.inl

template <typename InputIterator>
class myOperator
{
public:

typedef typename std::iterator traits<InputIterator>::value type value type;typedef typename std iterator_traits<InputIterator> value_type value_type;
InputIterator input, InputIterator offsets, output; int n; value_type scaleFactor;
myOperator(InputIterator input, InputIterator offsets, value_type scaleFactor, int n) :

input(input), offsets(offsets), scaleFactor(scaleFactor), n(n) { }

void operator()()
{

lathrust::transform(input.begin(), output.begin(), n, new offsetAndScale(scaleFactor, offsets));
}

struct offsetAndScale : public lathrust::unary_function
{

typedef struct offsetAndScaleData : public lathrust::functorData
{

value_type scaleFactor;
} OffsetAndScaleData;
virtual int getStateSize() { return (sizeof(OffsetAndScaleData)); }

offsetAndScale(value_type scaleFactor, InputIterator offsets)
{

OffsetAndScaleData* dstate = new OffsetAndScaleData;
dstate->scaleFactor = scaleFactor;
state = dstate;
addField(*offsets);

}

Pre-processor

value_type operator()(int index, value_type value, OffsetAndScaleData* state,
value_type* offsets)

{
return ((state->scaleFactor)*(value + offsets[index]));

}
};

};

: Functor Example
kernel sourcekernel_source

“...

__inline__ float lerp(float a, float b, float t)
{
return a + t*(b-a);

}

int offsetAndScale()(int index, int value, OffsetAndScaleData* state, int* offsets)
{

return ((state->scaleFactor)*(value + offsets[index]));
}

__kernel void transform(__global int* input, __global int* output, __global void* vstate,
__global void* field1)

{

clCreateProgramWithSource; clBuildProgram

{
unsigned int i = get_global_id(0);
output[i] = offsetAndScale(i, input[i], vstate, field1);

}

”

clCreateProgramWithSource; clBuildProgram

Compiled Kernel

user.cl
r

value_type offsetAndScale()(int index, value_type value, OffsetAndScaleData* state,
value_type* offsets)

{
return ((state->scaleFactor)*(value + offsets[index]));

}

	LAURPISTONTutorial
	PISTONTutorialR

