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OutO

● MotivationMotivation

– Portability and performance of visualization
current and next-generation supercomputers

● Introduction to data-parallel programming a

● Implementation of visualization operators

– Isosurface, Cut Surfaces, Threshold

● Current target architectures and performanc

CUDA/N idi GPU & O MP/M l i  – CUDA/Nvidia GPU & OpenMP/Multi-core 

● On-going work

OpenCL backend  unstructured grids  more o– OpenCL backend, unstructured grids, more o
parallelism, curvilinear coordiantes

● Tutorials

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

tline

n and analysis operations on 
s

and the Thrust library

ce

himachines

operators  ParaView integration  multi node operators, ParaView integration, multi-node 
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Motivation / RM v /

● Current production visualization Cu e  p oduc o  v sua a o  
software does not take full 
advantage of acceleration hardwa

d/  lti  hit tand/or multi-core architecture

● Vtk, ParaView, Visit

● Research on accelerating 
visualization operations are mostly
hardware-specific; few were hardware specific; few were 
integrated in visualization software

● CUDA SDK demo

● Dyken, Ziegler, “High-speed 
Marching Cubes using Histogram 
P id ”  E hi 2007

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Pyramids”, Eurographics 2007.

Related WorkW

● Most work in portability and 

are 

Mos  wo   po ab y a d 
abstraction layers/languages 
are not ready (yet)...

● Can we accelerate our 
visualization software with 
something that is based on 

 

something that is based on 
“proven” technology and 
portable across different 

e architectures?

● Data parallel libraries

– NVidia Thrust library

LA-UR-11-11980



Brief Introduction to Dat
d Tand T

● What is data parallelism?

● When independent processors 
performs the same task on performs the same task on 
different pieces of data

● Due to the massive data sizes we 
expect to be simulating we expect 
data parallelism to be a good way 
to exploit parallelism on current 
and next generation architectures

● “The data parallel bible” -
Blelloch, “Vector Models for Data ,
Parallel Computing”

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

a-Parallel Programming 
ThThrust

● What is Thrust?

● Thrust is a NVidia C++ template 
library for CUDA  It can also target library for CUDA. It can also target 
OpenMP and we are creating new 
backends to target other 
architecturesarchitectures

● Thrust allows you to program using 
an interface similar the C++ 
St d d T l t  Lib  (STL)Standard Template Library (STL)

● Most of the STL algorithms in Thrust 
are data parallel

LA-UR-11-11980



Videos of PISTV S

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

TON in ActionON
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Brief Introduction to Dat
d Tand T

● Why use Thrust instead of CUDA?W y use us  s ead o  CU ?

● Thrust offers a data parallel abst
abstraction will be portable to fut

● Specifically, in this talk we will sho
running on NVidia GPUs and mult

● What data structures does Thrust p

● Currently Thrust provides thrust::ho
which are analogous to std::vector
memory.

● These vector data structures simpl● These vector data structures simpl
transferring data between the hos

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

a-Parallel Programming 
ThThrust

traction. We believe code written in this 
ture systems.

ow the same algorithm written in Thrust 
ti-core CPUs.

provide?

ost_vector and thrust::device_vector, 
/r in the STL and reside in the host/device 

ify memory management and ify memory management and 
st and device.
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Brief Introduction to Dat
d Tand T

● Sorts

● Transforms

What algorithms does Thrust provide?

● Transforms

● Reductions

● Scans

● Binary searches

● Stream compactions

● Scatters / gathers

Challenge: Write operators in terms of g p
these primitives only

Reward:  Efficient, portable code

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

a-Parallel Programming 
ThThrust
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Isosurface with MarchingM g

Cl if  ll ll  b  t f● Classify all cells by transform

● Use copy_if to compact valid cells.

● For each valid cell, generate same 
number of geometries with flags.

Use copy if to do stream compaction ● Use copy_if to do stream compaction 
on vertices.

● This approach is too slow, more than ● This approach is too slow, more than 
50% of time was spent moving huge 
amount of data in global memory.

● Can we avoid calling copy_if and 
eliminate global memory movement?

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

g Cube – the Naive Wayg C N v W y
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Isosurface with MarchinM

Inspired by HistoPyramid● Inspired by HistoPyramid

● The filter is essentially a mapping 
from input cell id to output vertex idfrom input cell id to output vertex id

● Is there a “reverse” mapping?

If there is a reverse mapping  the ● If there is a reverse mapping, the 
filter can be very “lazy”

● Given an output vertex id, we onlyG ve a ou pu ve e d, we y
apply operations on the cell that 
would generate the vertex

● Actually for a range of output vertex 
ids

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

ng Cube – Optimizationg C Op
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Isosurface with MarchM

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

hing Cubes Algorithmg C g
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Cut SuC S

All h  i  d b  ● All the vertices generated by 
marching cube are on the cell edges.

● They have only one degree of ● They have only one degree of 
freedom, not three.

● 1D interpolation only, no need to do p y,
trilinear interpolation on scalar field.

● Two scalar fields, one for generating 
geometry (cut surface) the other for 
scalar interpolation.

Less than 10 LOC change  negligible ● Less than 10 LOC change, negligible 
performance impact to isosurface.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

rfaces

r

s
t
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Thres

● Again, very similar to marching ga , ve y s a  o a c g 
cube

● Classify cells, stream compact 
valid cells and generate 
geometries for valid cells.

O ti i ti  h t d  th  ● Optimization: what does the 
“inside” of a brick look like? Do 
we even care?

● Additional passes of cell 
classification and stream 

ti  t   “i t i  compaction to remove “interior 
cells”

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

shold

LA-UR-11-11980



Additional 

Blelloch’s “Vector Models for Data● Blelloch s Vector Models for Data
Data Structures
Graphs: Neighbor reducing, distributing excess across edges
Trees: Leaffix and rootfix operations, tree manipulations
Multidimensional arrays

Computational GeometryComputational Geometry
Generalized binary search
k‐D tree
Closest pair
Quickhull
Merge Hull

● Our on-going work: glyphs; render
casting version with k-D Tree); stati

A  l   ï  l i h  ll  ● At least a naïve algorithm usually p
transform and for_each pri
efficient global communication usuag

● Efficient algorithms will still require
across platforms 

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

OperatorsOp

Parallel Computing”-Parallel Computing
s

Graph Algorithms
Minimum spanning tree
Maximum flow
Maximal independent set

Numerical AlgorithmsNumerical Algorithms
Matrix‐vector multiplication
Linear‐systems solver
Simplex
Outer product
Sparse‐matrix multiplication

ring (rasterizing version and ray-
istics with reduce primitive

ibl  i  h  fl ibili  f possible using the flexibility of 
mitives with user-defined functors; 
ally requires use of scansy q

e clever design, but will be beneficial 

LA-UR-11-11980



PISTON CUDA BacS ON CU

Limited performance degradation ● Limited performance degradation 
relative to native CUDA optimized 
code

● PISTON

● Limited use of shared/texture memory 
d   bilidue to portability

● NVIDIA CUDA Demo

W k  l  ith d t  t ith  ● Works only with data set with power 
of 2 per dimension, allowing use of 
shift instead of integer division

M  i ffi i    f ● Memory inefficient; runs out of 
texture/global memory when data 
size is larger than 512^3

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

ckend Performance
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PISTON OpenMP BaS ON Op M

C il  i  #d fi / D i h  ● Compile time #define/-D switches 
between backends

● Wrote our own parallel scan ● Wrote our own parallel scan 
implementation for Thrust OpenMP
backend

● Significantly better performance 
than both single process and 
parallel VTKparallel VTK

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

ackend Performance
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PISTON OpenMP SS ON Op M S

● Significantly better scalability in 
term of # of cores than parallel 
VTK

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

caling Performanceg
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PISTON Compute aS ON C p

● Compute and render results

● CUDA and OpenMP backends

● CUDA/OpenGL interop

● Platform specific, non-portable

O d l● Output geometries directly into 
OpenGL VBO

● Avoid round trip between device and 
host memory  movement

● Vastly improves rendering 
performance and reduces memory 
footprint

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

and Render Results
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PISTON VisualizS ON V

Three fundamental visualization ● Three fundamental visualization 
operations

● All based on the same basic 
data-parallelism

● Very similar performance 
characteristics

● Cut plane is the fastest since it 
generates 2D planesgenerates 2D planes

● Threshold comes next because 
there is no interpolation for 
scalar nor position

● Isosurface is actually the most 
complicated operator

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

co p ca ed ope a o

ation OperatorsOp
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OpenCLOp C

● Motivation: Support for compiling visupp p g
of additional GPU and CPU architect

● Challenges

● OpenCL is not built into Thrust

● OpenCL is based on C99, making sup

● OpenCL compiles kernels from strings

● Current Approach

● Pre-processor extracts operators from use

● At run-time, our Thrust-like backend comb
OpenCL implementations of data-paralleOpenCL implementations of data-paralle

● Our Thrust-like backend uses run-time typ
functor calls, substituting for key words in 

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

● Kernel source only needs to be compiled 

Backend

ualization operators for a wide variety p y
ures

pport for C++ features difficult

s at run-time rather than from source files

er-written functors and outputs them to .cl files

bines these user-derived .cl files with its own native 
el primitives into kernel stringsel primitives into kernel strings

pe information to handle simple templating and 
 string

LA-UR-11-11980
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OpenCL BacOp C

● Preliminary Resultse a y esu s

● Successfully implemented isosurfac
with code almost identical to that 
OpenMP backends

● With interop on AMD FirePro V78
6 fps for 256^3 data set (2 fps w6 fps for 256^3 data set (2 fps w

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

ckend Results

ce and cut plane operators in OpenCL
used for the Thrust-based CUDA and 

800 (1440 streams), we can run at about 
without interop)without interop)

LA-UR-11-11980



On-going andO g g

M h  T h d   f   ● Marching Tetrahedra: a first step tow

● Integration with ParaView

● Multi-node parallelism with VTK/Par

● More operators, more backends

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

d Future WorkW

d   f  d dwards support for unstructured grids

raView’s MPI constructs

LA-UR-11-11980



Marching TM g

Current procedure● Current procedure

● Tetrahedralize uniform grid or unst

G t  i f t  b● Generate isosurface geometry ba

● Next step: Develop PISTON operat
compute isosurface directly on AMRcompute isosurface directly on AMR

● Polytypic algorithm design 

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Tetrahedra

tructured grid (e.g., AMR mesh)

d  l k  t bl  f  t t h d l llsed on look-up table for tetrahedral cells

tor to tetrahedralize grids, and/or to 
R grid R grid 

LA-UR-11-11980



Integration wg

● Filters that use PISTON data types and alg

● Utility filters interconvert between standard
(thrust device vectors)

● Can chain PISTON filters; soon will support

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

with ParaViewV

gorithms integrated into ParaView prototype

d VTK data format and PISTON data format 

 interop for on-card rendering
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Inter-node 

● Domain partitioned by VTK’s MPI lo a  pa o ed by V s M  

● Each node then uses PISTON filters
the domain

● Results combined by VTK’s composi

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Parallelism

ibrariesb a es

s to compute results for its portion of 

itors
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Additional 

● Current prototypes

● Glyphs

● Renderer – rasterizing and ray-castin
generation of images on systems with

● Halo finder for cosmology simulations

● Ultimately want to support a large subset

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

OperatorsOp

ng versions (using K-D Tree), allowing the 
hout OpenGL

s

t of ParaView filters, plus analysis operators

LA-UR-11-11980



Curvilinear CC v C

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

CoordinatesC
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Open-SourOp S

● Open-source release

● Tarball: http://viz.lanl.gov/projeca ba : p://v . a .gov/p ojec

● Repository: https://github.com/los

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

rce Release

cts/PISTON.htmlc s/ S ON.

salamos/PISTON
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Tuto

Be a Thrust user● Be a Thrust user

● Thrust QuickStartGuide examples

● Be a PISTON user● Be a PISTON user

● tutorial1{OMP/GPU}: create a tangle fie

● demo{OMP/GPU}: load a VTK structuredde o{OM /G U} oad a V s uc u ed
isosurface, cut plane, or threshold operat

● Be a PISTON developer

● tutorial2{OMP/GPU}: write a simple sim
operator (glyphs) using Thrust primitives, 
interop with CUDA)

● Be a PISTON algorithm designer

● tutorial3{OMP/GPU}: use data parallel 

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

rials

eld and apply the PISTON isosurface operator

d grid from a file and apply the PISTON d g d o a e a d app y e S ON
tor

ulation (boid flocking) and a simple visualization 
 and chain them together (optionally using 

primitives to design a KD-tree algorithm

LA-UR-11-11980



PISTON vS ON v

● Thrust provides:● Thrust provides:

● An STL-like interface for memory 
data-parallel algorithmsp g

● Backend implementations of the d
well as lower-quality implementat

● PISTON provides:

● A library of visualization and ana

● A data model for scalar fields (e.
grids in-progress)

● PISTON enhances:

● Non-CUDA backends
I f    di ib d 

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Interface to support distributed m

vs. Thrustv

management (host/device vectors) and 

data-parallel algorithms for CUDA, as 
tions for OpenMP and TBB

alysis operators implemented using Thrust

g., VTK structured grids; unstructured 

 i  

LA-UR-11-11980
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KD Tree: OO

Point Ids     

computeGlobalRanks 0 1 2 3 4 5 6 7  

computeFlags F T F F T F T TcomputeFlags F T F F T F T T  

segmentedSplit 0 2 3 5 1 4 6 7  

0 0 0 0 1 1 1 1     F F F F T T T T  

Le
ve
l 1

renumberRanks

computeFlags F F T T T T F F  

segmentedSplit 0 2 3 5 6 7 1 4  

0 0 1 1 2 2 3 3     F F T T F F T T  Le
ve
l 2

renumberRanks

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

OverviewOv v

      X Ranks            Y Ranks

  1 6 0 2 7 3 4 5    0 5 2 3 7 6 4 1

F T F F T F T T F T F F T F T T  F T F F T F T T F T F F T F T T

  1 0 2 3 6 7 4 5    0 2 3 6 5 7 4 1

  F F F F T T T T    F F F F T T T T

1 0 2 3 2 3 0 1    0 1 2 3 2 3 1 0

  F F T T T T F F    F F T T T T F F

  1 0 2 3 0 1 2 3    0 1 2 3 1 0 2 3

  F F T T F F T T    F F T T F F T T

1 0 0 1 0 1 0 1    0 1 0 1 1 0 0 1
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KD Tree: compup

A  Input coordinates    2.9 8.9 2.4 6

B  CountingIterator(0)    0   1   2  

C sort by key(A B) 2 4 2 9 6 4 6C  sort by key(A,B)     2.4 2.9 6.4 6

2   0   3  

D  scatter(B,C)           1   6   0  

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

uteGlobalRanksG

6.4 9.3 6.9 7.5 7.6

 3   4   5   6   7

6 9 7 5 7 6 8 9 9 36.9 7.5 7.6 8.9 9.3

 5   6   7   1   4

 2   7   3   4   5
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KD Tree: co

A  Input ranks                       

B  Input segmentIds

C CountingIterator(1)C  CountingIterator(1)               

D  Reverse inclusive scan by key(B,C,
// # elements in segment

E  transform(E[i]=D[i]/2)            
// # median index

F  transform(F[i]=A[i]>=E[i])        

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

mputeFlagsp g

        1 6 0 2 7 3 4 5

0 0 0 0 0 0 0 0 

1 2 3 4 5 6 7 8        1 2 3 4 5 6 7 8

max)    8 8 8 8 8 8 8 8  

        4 4 4 4 4 4 4 4  

        F T F F T F T T
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KD Tree: segg

A  Input pointIds

B  Input flags                             

C  Input segmentIds

D  exclusive_scan_by_key(C,B)              
// total number of true flags preceding 

E  CountingIterator(0)                     

F  inclusive_scan_by_key(C,E,min)          
// total number of elements in previous 

G  CountingIterator(1)                     

H  Reverse inclusive_scan_by_key(C,G,max)  
// index of last element in its segment 

I  inclusive_scan_by_key(C,inverse(B))     
// total number of false flags so far i

J  transform(J[i]=(if(B[i]) F[i]+I[H[i]-1]

K  scatter(A,J)                            

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

gmentedSplitg Sp

0 2 3 5 1 4 6 7

                        F F T T T T F F

0 0 0 0 1 1 1 1

                        0 0 0 1 0 1 2 2
in segment

                        0 1 2 3 4 5 6 7

                        0 0 0 0 4 4 4 4
segments

                        1 2 3 4 5 6 7 8

                        4 4 4 4 8 8 8 8 
(+1)

                        1 2 2 2 0 0 1 2
n segment 

+D[i] else F[i]+I[i]-1)) 0 1 2 3 6 7 4 5

                        0 2 3 5 6 7 1 4
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KD Tree: ren

A  Input ranks                       

B  Input flags                       

C  Input segmentIds

D  ConstantIterator(1)               

E  exclusive_scan_by_key(C,D)        

F  scatter(E,A)                      

G  scatter(B,A)                      

H segmentedSplit(F G)H  segmentedSplit(F,G)               

I  CountingIterator(0)               

J  inclusive scan by key(C,I,min)    y y
// total number of elements in pre

K  transform(H+J)                    

L tt (E K)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

L  scatter(E,K)                      

numberRanks

                  0 2 3 6 5 7 4 1

                  F F F F T T T T

0 0 0 0 1 1 1 1

                  1 1 1 1 1 1 1 1

                  0 1 2 3 0 1 2 3

                  0 3 1 2 2 0 3 1

                  F T F F T T F T

0 1 2 3 3 2 0 1                  0 1 2 3 3 2 0 1

                  0 1 2 3 4 5 6 7

                  0 0 0 0 4 4 4 4
evious segments

                  0 1 2 3 7 6 4 5

0 1 2 3 2 3 1 0

LA-UR-11-11980
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KD Tree: renumberRan

A  Input ranks                                   

B  Input flags                                   

C  Input segmentIds

D  Input pre-split segmentIds

E  CountingIterator(0)                           

F  inclusive_scan_by_key(D,E,min)                

G  transform(A+F)                                

H  ConstantIterator(1)                           

I  exclusive_scan_by_key(C,H)                    

J  scatter(I,G)                                  

K  scatter(B,G)                                  

L segmentedSplit(J,K,C)L  segmentedSplit(J,K,C)                         

M  inclusive_scan_by_key(C,E,min)                

N  transform(L+M)                                

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

O  scatter(I,N)                                  

ks (further segmented)( g )

      0 1 2 3 1 0 2 3

      F F T T F F T T

0 0 1 1 2 2 3 3

0 0 0 0 1 1 1 1

      0 1 2 3 4 5 6 7  

      0 0 0 0 4 4 4 4

      0 1 2 3 5 4 6 7

      1 1 1 1 1 1 1 1

      0 1 0 1 0 1 0 1

      0 1 0 1 1 0 0 1

      F F T T F F T T

0 1 0 1 1 0 0 1      0 1 0 1 1 0 0 1

      0 0 2 2 4 4 6 6

      0 1 2 3 5 4 6 7
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OpenCL Op C

M i i  S  f  ili  ● Motivation: Support for compiling 
variety of additional GPU and CP

Ch ll● Challenges

● OpenCL is not built into Thrust, re
scratchscratch

● OpenCL is based on C99, making
C++ features (templates, functors

● OpenCL compiles kernels from str
rather than directly compiling C c
compile timecompile-time

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

Backend

i li i   f   id  visualization operators for a wide 
PU architectures

quiring us to create a new backend from 

g it difficult to support 
s, iterators, etc.) integral to Thrust

rings in the host language at run-time 
code embedded in the host language at 

LA-UR-11-11980



OpenCL Backend:OpenCL Backend:

PISTON id   Th t lik  lib  f i l d● PISTON provides a Thrust-like library of include
that can read and write data to the device usin
parallel primitives (scan, transform, etc.) in .cl fil
defined functions

● User writes an operator in C++, making calls to
optionally passing user-defined functors as argu

● PISTON pre-processor extracts operators (which
and outputs them to .cl files as functions named 

● At run-time, PISTON backend wrapper functions, pp
data-parallel primitive .cl file and the pre-proc
defined function calls with the appropriate func
of the functor argument) and key words for dat

l d  d  )  d k  templated instantiation data types), and make c

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

 Prototype Design Prototype Design

 fil  (“l th t”) th t i l t h t/d i  t  e files (“lathrust”) that implement host/device vectors 
g OpenCL, and OpenCL-native code for basic data-
les, with keywords as placeholders for calls to user-

o lathrust wrappers for the data-parallel primitives, 
uments

h must be C99-compliant) from user-defined functors
according to the class name of their functor

s create a string by concatenating the contents of the g y g
essor-generated .cl file, replace key words for user-
tion name (based on the run-time type information 
ta types with actual data types (based on the 

ll   O CL  b ld d  h  k lcalls to OpenCL to build and execute the kernel
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OpenCL Backend
util_math.cl

...
__inline__ float lerp(float a, float b, float t)
{
return a + t*(b-a);

transform.cl

__kernel void transform(__global T_TYPE* input, __global T_TYPE* output)  
{

unsigned int i = get_global_id(0);
t t[i] USER OPERATOR(i t[i])

}

lat

output[i] = USER_OPERATOR(input[i]);   
}

myOperator.inl

template <typename InputIterator>
class myOperator
{{
public:

typedef typename std::iterator_traits<InputIterator>::value_type value_type;
InputIterator input, temp, output;  int n;
myOperator(InputIterator input, int n) : input(input), n(n) { }

void operator()()
{

lathrust::transform(input begin() temp begin() n new doubleIt());lathrust transform(input.begin(), temp.begin(), n, new doubleIt());

lathrust::transform(temp.begin(), output.begin(), n, new tripleIt());
}

struct doubleIt : public lathrust::unary_function
{

doubleIt() { }

user.cl

value_type doubleIt(
{

value_type operator()(value_type value)
{

return 2*value;
}

};

struct tripleIt : public lathrust::unary_function
{

{
return 2*value;

}

value_type tripleIt()(
{

return 3*value;
}

Pre-processor

tripleIt() { }

value_type operator()(value_type value)
{

return 3*value;
}

};
};

: Simple Example
kernel_source

“...

__inline__ float lerp(float a, float b, float t)
{{
return a + t*(b-a);

}

int doubleIt()(int value)
{

return 2*value;
}

thrust backend

__kernel void transform(__global int* input, __global int* output)  
{

unsigned int i = get_global_id(0);
output[i] = doubleIt(input[i]);   

}

”

Compiled Kernel

Compiled Kernel

lathrust backend

clCreateProgramWithSource; clBuildProgram

()(value_type value)

kernel_source

“...

__inline__ float lerp(float a, float b, float t)
{

t + t (b );

lathrust backend

(value_type value)

return a + t*(b-a);
}

int tripleIt()(int value)
{

return 3*value;
}

kernel void transform( global int* input global int* output)__kernel void transform(__global int* input, __global int* output)  
{

unsigned int i = get_global_id(0);
output[i] = tripleIt(input[i]);   

}

”



OpenCL Backend:Op C

Th  PISTON b k d  id  th  O● The PISTON backend can provide the Op
defined functor with access to the functor
in a struct and passing it to the OpenCL f

● Large functor data fields are passed sep
in the OpenCL data-parallel primitive im
parameters passed to the kernel and on 

● Permutation iterators are similarly implem
kernel and replacing keywords in the Op
permutation fieldpermutation field

● The kernel source code is the same betwe
(even though the data it is sent may diffe
performance once at the beginning for e
compiled kernel reused whenever that ca
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er), so kernel compilation can be 
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OpenCL Backend:
util math cl

t f l

util_math.cl

...
__inline__ float lerp(float a, float b, float t)
{
return a + t*(b-a);

} lathrust backend

transform.cl

__kernel void transform(__global T_TYPE* input, __global T_TYPE* output, 
__global void* vstate FIELD_PARAMETERS)  

{
unsigned int i = get_global_id(0);
output[i] = USER_OPERATOR(i, input[i], vstate PASS_FIELDS);   

}

myOperator.inl

template <typename InputIterator>
class myOperator
{
public:

typedef typename std::iterator traits<InputIterator>::value type value type;typedef typename std iterator_traits<InputIterator> value_type value_type;
InputIterator input, InputIterator offsets, output;  int n;  value_type scaleFactor;
myOperator(InputIterator input, InputIterator offsets, value_type scaleFactor, int n) :   

input(input), offsets(offsets), scaleFactor(scaleFactor), n(n) { }

void operator()()
{

lathrust::transform(input.begin(), output.begin(), n, new offsetAndScale(scaleFactor, offsets));
}

struct offsetAndScale : public lathrust::unary_function
{

typedef struct offsetAndScaleData : public lathrust::functorData
{

value_type scaleFactor;
} OffsetAndScaleData;
virtual int getStateSize() { return (sizeof(OffsetAndScaleData)); }

offsetAndScale(value_type scaleFactor, InputIterator offsets)
{

OffsetAndScaleData* dstate = new OffsetAndScaleData;
dstate->scaleFactor = scaleFactor;
state = dstate;
addField(*offsets);

}

Pre-processor

value_type operator()(int index, value_type value, OffsetAndScaleData* state, 
value_type* offsets)

{
return ((state->scaleFactor)*(value + offsets[index]));

}
};

};

: Functor Example
kernel sourcekernel_source

“...

__inline__ float lerp(float a, float b, float t)
{
return a + t*(b-a);

}

int offsetAndScale()(int index, int value, OffsetAndScaleData* state, int* offsets)
{

return ((state->scaleFactor)*(value + offsets[index]));
}

__kernel void transform(__global int* input, __global int* output, __global void* vstate, 
__global void* field1)

{

clCreateProgramWithSource; clBuildProgram

{
unsigned int i = get_global_id(0);
output[i] = offsetAndScale(i, input[i], vstate, field1);   

}

”

clCreateProgramWithSource; clBuildProgram

Compiled Kernel

user.cl
r

value_type offsetAndScale()(int index, value_type value, OffsetAndScaleData* state, 
value_type* offsets)

{
return ((state->scaleFactor)*(value + offsets[index]));

}
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