LA-UR-11-11980

Approved for public release;
distribution is unlimited.

Title: | Portability and Performance for Visualization and Analysis
Operators Using the Data-Parallel PISTON Framework

Author(s): | Christopher Sewell
Li-ta Lo
James Ahrens

Intended for: | Many-Core Library Tutorial and Code Sprint, September
19-20, 2012

/\
3
> Los Alamos

NATIONAL LABORATORY
EST.1943

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Form 836 (7/06)

Portability and Performance for Visualization and Analysis
Operators Using the Data-Parallel PISTON Framework

Chris Sewell
Li-Ta Lo
James Ahrens
Los Alamos National Laboratory

/0
s E;)sAlamos

NATIONAL LABORATORY

EET. 1947

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| '| 980

Qutline
I e

o Maotivation

— Portability and performance of visualization and analysis operations on
current and next-generation supercomputers

Introduction to data-parallel programming and the Thrust library

Implementation of visualization operators

— lIsosurface, Cut Surfaces, Threshold

Current target architectures and performance

— CUDA /Nvidia GPU & OpenMP /Multi-core machines

On-going work

— OpenCL backend, unstructured grids, more operators, ParaView integration, multi-node
parallelism, curvilinear coordiantes

Tutorials

ya

—)
- Los Alamos
NATIONAL LABORATORY

EST. 1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| ‘| 980

Motivation / Related Work

. Current production visualization .
software does not take full
advantage of acceleration hardware
and /or multi-core architecture

. Vik, ParaView, Visit

. Research on accelerating
visualization operations are mostly
hardware-specific; few were
integrated in visualization software

. CUDA SDK demo

. Dyken, Ziegler, “High-speed
Marching Cubes using Histogram
~ Pyramids”, Eurographics 2007.

)
- Los Alamos

NATIONAL LABORATORY

Most work in portability and
abstraction layers/languages
are not ready (yet)...

Can we accelerate our
visualization software with
something that is based on
“proven” technology and
portable across different
architectures?

. Data parallel libraries

— NVidia Thrust library

E5T.1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

LA-UR-11-11980

Brief Introduction to Data-Parallel Programming

and Thrust

« What is data parallelism?

/\

When independent processors
performs the same task on
different pieces of data

Due to the massive data sizes we
expect to be simulating we expect
data parallelism to be a good way
to exploit parallelism on current
and next generation architectures

“The data parallel bible” -
Blelloch, “Vector Models for Data
Parallel Computing”

)
- Los Alamos

NATIONAL LABORATORY
E5T.194

« What is Thrust?

Thrust is a NVidia C++ template
library for CUDA. It can also target
OpenMP and we are creating new
backends to target other
architectures

Thrust allows you to program using
an interface similar the C++

Standard Template Library (STL)

Most of the STL algorithms in Thrust
are data parallel

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

LA-UR-11-11980

Videos of PISTON in Action

a
s lEAIamos

NATIONAL LABORATORY

EST. 1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I 'I _ 'I 'I 980

Brief Introduction to Data-Parallel Programming

and Thrust

T =
. Why use Thrust instead of CUDA?

. Thrust offers a data parallel abstraction. We believe code written in this
abstraction will be portable to future systems.

. Specifically, in this talk we will show the same algorithm written in Thrust
running on NVidia GPUs and multi-core CPUs.

. What data structures does Thrust provide?

« Currently Thrust provides thrust::host_vector and thrust::device_vector,

which are analogous to std::vector in the STL and reside in the host/device
memory.

These vector data structures simplify memory management and
transferring data between the host and device.

AAAAAAAAAAAAAAAAAA

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

LA-UR-11-11980

Brief Introduction to Data-Parallel Programming

and Thrust
I s

What algorithms does Thrust provide?

. Sorts

. Transforms
transform(+1)

inclusive_scan (+)
exclusive_scan (+)
exclusive scan(max)
transform inscan(*2, +)
for each(-1)

. Reductions
. Scans

. Binary searches

= W o O O &=
|_l
(S 0 ST =N 5 o Y S N W T s 3
(]
(]
o
s
)
o

sort 3 4 5
. Stream compactions copy_if(n % 2 == 1) 3
reduce (+) 15
. Scatters / gathers .
inputl 0O 0 2 4 8
input?2 3 4 1 0 2
Challenge: Write operators in termsof ____________________________________
these primitives only upper_bound 3 4 2 2 3
permutation_1iterator 4 8 0 0 2

Reward: Efficient, portable code

ya

—)
- Los Alamos

NATIONAL LABORATORY
57194

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| ‘| 980

Isosurface with Marching Cube — the Naive Way

]
[L] L
. Classify all cells by transform
) o
« Use copy_if to compact valid cells. oo o o *
. For each valid cell, generate same ° ¢
oo . o ° °
number of geometries with flags. —— e AN
:) .\
« Use copy_if to do stream compaction N N
on vertices. AN

. This approach is too slow, more than
50% of time was spent moving huge
amount of data in global memory.

. Can we avoid calling copy_if and
eliminate global memory movement?

/‘\

)
- Los Alamos

NATIONAL LABORATORY
EST.194

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| '| 980

Isosurface with Marching Cube — Optimization

]
o { o L
« Inspired by HistoPyramid 0 1 2 3 4 5 6
o o
. The filter is essentially a mapping oo o o °
from input cell id to output vertex id S o
oo . o ° °
« Is there a “reverse” mapping? —— e AN
", ° .\
« If there is a reverse mapping, the 0\ s 3 4 8
f-l 1 ” - 6 \9
ilter can be very “lazy] s AN
7

. Given an output vertex id, we only
apply operations on the cell that
would generate the vertex

. Actually for a range of output vertex
ids

ya

—)
- Los Alamos

NATIONAL LABORATORY
EST.194

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| . '| '| 980

Isosurface with Marching Cubes Algorithm
I I ——

® [] !] ®
1. 1nput 0 1 2 3 4 5 6
transform(classify_cell) pe e ® : ¢ pe
2. caseNums 4 0 12 0 6 0 5
] o
] ¢ 9 ® o
3. numVertices 2 0 2 0 2 0 4
transform_inclusive_scan(is_valid cell) nd o
4. validCellEnum 1 1 2 2 3 3 4
5. CountingIterator 0 1 2 3 # of valid cells = 4
upper_bound
6. validCellIndices 0 2 4 6
\‘ [] & \.
. . L4 .\
make_permutation_iterator
7. numVerticesCompacted 2 2 2 4
exclusive_scan] Total # of vertices = 10
8. numVerticesEnum 0 2 4 6

for_each(isosurface_tfunctor) 4
. 8
9. outputVertices N, 23 | AN
5

N,
P

aiggAknnos

NATIONAL LABORATORY
57194

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| ‘| 980

Cut Surfaces

« All the vertices generated by

marching cube are on the cell edges.

. They have only one degree of
freedom, not three. |

. 1D interpolation only, no need to do y
trilinear interpolation on scalar field.

. Two scalar fields, one for generating
geometry (cut surface) the other for t
scalar interpolation. [/S

« Less than 10 LOC change, negligible
performance impact to isosurface.

ya

—)
- Los Alamos

NATIONAL LABORATORY
EST.194

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| - '| ‘| 980

Threshold
I s

. Again, very similar to marching
cube

. Classify cells, stream compact

valid cells and generate

geometries for valid cells.

. Optimization: what does the
“inside” of a brick look like¢ Do

we even care?¢

. Additional passes of cell

classification and stream

compaction to remove “interior

cells”

ya

)
- Los Alamos

NATIONAL LABORATORY
EST.194

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| '| 980

Additional Operators

Blelloch’s “Vector Models for Data-Parallel Computing”

Data Structures Graph Algorithms

Graphs: Neighbor reducing, distributing excess across edges Minimum spanning tree

Trees: Leaffix and rootfix operations, tree manipulations Maximum flow

Multidimensional arrays Maximal independent set
Computational Geometry Numerical Algorithms

Generalized binary search Matrix-vector multiplication

k-D tree Linear-systems solver

Closest pair Simplex

Quickhull Outer product

Merge Hull Sparse-matrix multiplication

Our on-going work: glyphs; rendering (rasterizing version and ray-
casting version with k-D Tree); statistics with reduce primitive

At least a naive algorithm usually possible using the flexibility of
transform and for_each primitives with user-defined functors;

efficient global communication usually requires use of scans

Efficient algorithms will still require clever design, but will be beneficial

across platforms

A
> E;)sAlamos

NATIONAL LABORATORY
E5T.194

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| '| 980

PISTON CUDA Backend Performance
I s

. Limited performance degradation

. . .. 3D Isosurface Generation: CUDA Compute Rates
relative to native CUDA optimized

A~ NVIDIA Native CUDA Demo (Quadro 448 cores)
COde - —&— PISTON CUDA Backend (Quadro 448 cores)
o _|
o NG
. PISTON ;
18_ -
. Limited use of shared/texture memory o
due to portability o ©
(o]
3
w o
. NVIDIA CUDA Demo g 8
3
. . E 3 -
- Works only with data set with power & =
of 2 per dimension, allowing use of 3 -
shift instead of integer division
« Memory inefficient; runs out of N
texture /global memory when data o |
size is larger than 51273 | | | J
64 128 256 512
f_) Grid size equivalent (cubed)

s Los Alamos

NATIONAL LABORATORY
EST.1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| ‘| 980

PISTON OpenMP Backend Performance
]

. Comp”e time #define/_D switches 3D Isosurface Generation: CPU Compute Rates
between bOCkendS 3 | —— PISTON OMP Backend (Opteron 48 cores)
18_ o £~ Parallel VTK (Opteron 48 cores)
—-4— VTK (O 1
. Wrote our own parallel scan (Opteron 1 core)
implementation for Thrust OpenMP
backend g 7
g
. Significantly better performance &
. 5
than both single process and 5 S
£
parallel VTK g
a
s [1 I
64 128 256 512
ya Grid size equivalent (cubed)

—)
- Los Alamos
NATIONAL LABORATORY
EST. 1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| - '| ‘| 980

PISTON OpenMP Scaling Performance
I I ——

3D Isosurface Generation: PISTON OpenMP Scaling

. Significclnﬂy better SCCIICIbiIiTy in Grid size: 769x910x192 (~512A3)
term of # of cores than parallel [~ PisTon openvp
VTK —A— Parallel VTK
ﬂ- p—
§ m —
)
g
3
=S
S
[
o &0.79
O —
| | | T T
0 10 20 30 40
_ﬁ Number of Processors (OMP)

° l;)sAIamos

NATIONAL LABORATORY
57194

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| ‘| 980

PISTON Compute and Render Results
T

3D Isosurface Generation:

« Com pute and render results - Compute + Render Rates For PISTON Backends
§ —
. CUDA and OpenMP backends o
o -
]
o
. CUDA/OpenGlL interop i
CE —_
. Platform specific, non-portable 3
. Output geometries directly into ;% 7
OpenGL VBO 5 o -
Q_ —
W)
. Avoid round trip between device and £ 3
host memory movement - -
S
« Vastly improves rendering o
performance and reduces memory .
foofprinf S -a PISTON CUDA with Interop (Quadro 448 cores)
PISTON CUDA without Interop (Quadro 448 cores) 0z
g _|~%— PISTON OMP (Xeon 12 cores) "ﬁ
I | [|
64 128 256 512
/" Grid size equivalent (cubed)

—)
- Los Alamos
NATIONAL LABORATORY

EST. 1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| '| 980

PISTON Visualization Operators
T =

. Three fundamental visualization
operations

. All based on the same basic
data-parallelism

« Very similar performance
characteristics

. Cut plane is the fastest since it
generates 2D planes

« Threshold comes next because
there is no interpolation for
scalar nor position

. lIsosurface is actually the most

complicated operator
pa

—)
- Los Alamos

NATIONAL LABORATORY

Frames per Second

50 100 200 500 1000

20

10

3D Visualization Operators: CUDA Compute Rates

1450
1200

PISTON Cut Plane (CUDA, Quadro 448 cores)
—~— PISTON Threshold (CUDA, Quadro 448 cores)
—&— PISTON Isosurface (CUDA, Quadro 448 cores)

64

| | |
128 256 512

Grid size equivalent (cubed)

EST. 1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

LA-UR-11-11980

OpenCL Backend
T

. Motivation: Support for compiling visualization operators for a wide variety
of additional GPU and CPU architectures

« Challenges

« OpenCL is not built into Thrust
« OpenCl is based on C99, making support for C++ features difficult

« OpenCL compiles kernels from strings at run-time rather than from source files

« Current Approach

« Pre-processor extracts operators from user-written functors and outputs them to .cl files

. At run-time, our Thrust-like backend combines these user-derived .cl files with its own native
OpenCL implementations of data-parallel primitives into kernel strings

« Our Thrust-like backend uses run-time type information to handle simple templating and
functor calls, substituting for key words in string

«"_Kernel source only needs to be compiled once for each time it appears in code
- Los Alamos

»»»»»»

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| '| 980

OpenCL Backend Results
T

. Preliminary Results

. Successfully implemented isosurface and cut plane operators in OpenCL
with code almost identical to that used for the Thrust-based CUDA and
OpenMP backends

« With interop on AMD FirePro V7800 (1440 streams), we can run at about
6 fps for 256”3 data set (2 fps without interop)

//\
> lEAIamos

NATIONAL LABORATORY

E5T. 1942

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| '| 980

On-going and Future Work
]

« Marching Tetrahedra: a first step towards support for unstructured grids

. Integration with ParaView

. Multi-node parallelism with VTK /ParaView’s MPI constructs

. More operators, more backends

/‘\

~
» Los Alamos
NATIONAL LABORATORY

EET. 1947

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| '| 980

Marching Tetrahedra
I I ——
« Current procedure

. Tetrahedralize uniform grid or unstructured grid (e.g., AMR mesh)

. Generate isosurface geometry based on look-up table for tetrahedral cells

. Next step: Develop PISTON operator to tetrahedralize grids, and/or to
compute isosurface directly on AMR grid

. Polytypic algorithm design

ya - S |
) I —
- Los Alamos

NATIONAL LABORATORY

E5T. 1942

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| '| 980

Integration with ParaView

Filters that use PISTON data types and algorithms integrated into ParaView prototype

. Utility filters interconvert between standard VTK data format and PISTON data format
(thrust device vectors)

« Can chain PISTON filters; soon will support interop for on-card rendering

s Los Alamos

NATIONAL LABORATORY

EET. 1947

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_UR_ 'I '| . '| ‘| 980

Inter-node Parallelism

T
. Domain partitioned by VTK’s MPI libraries

. Each node then uses PISTON filters to compute results for its portion of
the domain

. Results combined by VTK’s compositors

‘ Visualization Toolkit - OpenGL

a
> Lit_))sAIamos

NATIONAL LABORATORY
EST. 1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| '| 980

Additional Operators
]

« Current prototypes

. Glyphs

. Renderer — rasterizing and ray-casting versions (using K-D Tree), allowing the
generation of images on systems without OpenGL

. Halo finder for cosmology simulations

. Ultimately want to support a large subset of ParaView filters, plus analysis operators

s Los Alamos

NATIONAL LABORATORY
EST. 194

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| ‘| 980

Recent Development — Curvilinear Coordinates

A
. Generic algorithm design

. High-level algorithms are
independent of coordinate
systems

. Implemented by multiple
layers of coordinate
transformations

. Due to kernel fusion, very
little performance impact

» Los Alamos

AAAAAAAAAAAAAAAAAA

sssssss

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA- UR- -I -I _ -I -I 980

Open-Source Release

. Open-source release

. Tarball: http://viz.lanl.gov/projects /PISTON.html

. Repository: https://github.com/losalamos/PISTON

A

° l;)sAIamos

NATIONAL LABORATORY
EST. 1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| ‘| 980

Acknowledgments and Resources

. The work on PISTON was funded by the NNSA ASC CCSE Program,

Thuc Hoang, national program manager, Bob Webster and David
Daniel, Los Alamos program managers

. For more information, see
http:/ /viz.lanl.gov/projects /PISTON.html

AAAAAAAAAAAAAAAAAA

133 3
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

LA-UR-11-11980

Tutorials

Be a Thrust user

Thrust QuickStartGuide examples

Be a PISTON user

. tutorial | {OMP/GPU}: create a tangle field and apply the PISTON isosurface operator

. demo{OMP/GPU}: load a VTK structured grid from a file and apply the PISTON
isosurface, cut plane, or threshold operator

Be a PISTON developer

. tutorial2{OMP /GPU}: write a simple simulation (boid flocking) and a simple visualization
operator (glyphs) using Thrust primitives, and chain them together (optionally using
interop with CUDA)

Be a PISTON algorithm designer

. tutorial3{OMP /GPU}: use data parallel primitives to design a KD-tree algorithm
/‘\

)
- Los Alamos

NATIONAL LABORATORY
EST.194

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| '| 980

PISTON vs. Thrust

. Thrust provides:

. An STL-like interface for memory management (host /device vectors) and
data-parallel algorithms

. Backend implementations of the data-parallel algorithms for CUDA, as
well as lower-quality implementations for OpenMP and TBB

. PISTON provides:

A library of visualization and analysis operators implemented using Thrust

. A data model for scalar fields (e.g., VTIK structured grids; unstructured
grids in-progress)

. PISTON enhances:

. Non-CUDA backends

pal Interface to support distributed memory operations
- Los Alamos

NATIONAL LABORATORY
EST.194

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

LA-UR-11-11980

KD-Tree

10 ~

- Los Alamos

NATIONAL LABORATORY

10

EST. 1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA

LA-UR-11-11980

KD Tree: Overview

Point Ids X Ranks Y Ranks

computeGlobalRanks 0 1 2 3 4 5 6 7 16 0273405 05237¢%6 41
— computeFlags FTFFTVFTT FTFFTPFTT FTPFPEFTFEFTT
-% segmentedSplit 0 235|146 7 1 02 3|6 7405 0236|5741
B

00001111 FFFFITTTT FFPFPFBFITTTT FFPFEFFFTTTT

renumberRanks 1 02 3|23 01 012 312310

computeFlags FFPTT|ITTTFEFF FFPTT|ITTTFEFF FFTTTTTFF
f; segmentedSplit 0 2:3 516 7:1 4 1 0:2 310 1:2 3 0 1:2 3|11 0:2 3
§00112233 FFETTFFETT FFETTFFETT FFETTFFETT

renumberRanks : : 1001/01l01 010 1/1 0l0 1

A

- Los Alamos
NATIONAL LABORATORY
EST. 1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| ‘| 980

KD Tree: computeGlobalRanks
I I ——

A Input coordinates 2.9 8.9 2.4 6.4 9.3 6.9 7.5 7.6
B CountingIterator (0) 0 1 2 3 4 5 6 7
C sort by key (A, B) 2.4 2.9 6.4 6.9 7.57.6 8.9 9.3

D scatter (B, C) 1 6 0 2 7 3 4 5

A

«EgAhnms

NATIONAL LABORATORY
EST. 1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| ‘| 980

KD Tree: computeFlags
T

A Input ranks 16 027 3 405
B Input segmentIds 0O 00O0O0O0OO 0O
C Countinglterator(1l) 1 23 45¢6 78
D Reverse inclusive scan by key (B, C,max) 8 8 8 8 8 8 8 8

// # elements in segment

E transform(E[i]=D[i]/2) 4 4 4 4 4 4 4 4
// # median index

F transform(F[i]=A[i]>=E[i]) FTFFTPFEFTT

A

«EgAhnms

NATIONAL LABORATORY
EST. 1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| ‘| 980

KD Tree: segmentedSplit
T =

A Input pointIds 023514¢67
B Input flags FFTTTTTFTF
C Input segmentlIds 00001111
D exclusive scan by key(C,B) 00010122

// total number of true flags preceding in segment
E CountingIterator(0) 01 2345¢67

F inclusive scan by key(C,E,min) 000044 4 4
// total number of elements in previous segments

G CountingIterator (1) 1 2345¢6 78

H Reverse inclusive scan by key(C,G,max) 4 4 4 488 88
// index of last element in its segment (+1)

I 1inclusive scan by key(C, inverse (B)) 12220012
// total number of false flags so far in segment

J transform(J[i]l=(if(B[i]) FI[i]+I[H[i]-1]1+D[i] else F[i]+I[i]-1)) 0 1 2 3 6 7 4 5

K scatter(A,Jd) 02356 714

A

. E(?sAlamos

NATIONAL LABORATORY

EST. 1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| ‘| 980

KD Tree: renumberRanks

A Input ranks 023605741
B Input flags FFFFTTTT
C Input segmentlIds 0O 0001111
D ConstantIterator(1l) 11111111
E exclusive scan by key(C,D) 01230123
F scatter(E,A) 031222031
G scatter(B,A) FTFFTTZEFT
H segmentedSplit (F,G) 01233201
I CountinglIterator(0) 01 2345¢6 7
J inclusive scan by key (C,I,min) O 000 4 4 4 4

// total number of elements in previous segments
K transform(H+J) 012376 405

L igatter(E,K) 01232310
s Los Alamos

NATIONAL LABORATORY
57194

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| ‘| 980

KD Tree: renumberRanks (further segmented)

A Input ranks 01231023
B Input flags FFTTFPFTT
C Input segmentIds 00112233
D Input pre-split segmentIds 00001111
E CountinglIterator (0) 01 2345¢67
F inclusive scan by key(D,E,min) 000044 44
G transform(A+F) 01235467
H ConstantIterator (1) 11111111
I exclusive scan by key(C,H) 01 010101
J scatter(I,G) 01 0110001
K scatter(B,G) FFTTFFTT
L segmentedSplit (J,K,C) 01 0110001
M inclusive scan by key(C,E,min) 00224466
N transform(L+M) 012354¢67
@) Sc-:/_g‘%ter(I,N) 01 0110001

- Los Alamos
NATIONAL LABORATORY
EST. 1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| ‘| 980

OpenCL Backend
T

. Motivation: Support for compiling visualization operators for a wide
variety of additional GPU and CPU architectures

. Challenges

. OpenCL is not built into Thrust, requiring us to create a new backend from
scratch

. OpenCl is based on C99, making it difficult to support
C++ features (templates, functors, iterators, etc.) integral to Thrust

. OpenCL compiles kernels from strings in the host language at run-time
rather than directly compiling C code embedded in the host language at
compile-time

/‘\

~)
- Los Alamos

NATIONAL LABORATORY
EST.1943

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| '| 980

OpenCL Backend: Prototype Design
I I ——

. PISTON provides a Thrust-like library of include files (“lathrust”) that implement host/device vectors
that can read and write data to the device using OpenCL, and OpenClL-native code for basic data-
parallel primitives (scan, transform, etc.) in .cl files, with keywords as placeholders for calls to user-
defined functions

. User writes an operator in C++, making calls to lathrust wrappers for the data-parallel primitives,
optionally passing user-defined functors as arguments

« PISTON pre-processor extracts operators (which must be C99-compliant) from user-defined functors
and outputs them to .cl files as functions named according to the class name of their functor

. At run-time, PISTON backend wrapper functions create a string by concatenating the contents of the
data-parallel primitive .cl file and the pre-processor-generated .cl file, replace key words for user-
defined function calls with the appropriate function name (based on the run-time type information
of the functor argument) and key words for data types with actual data types (based on the
templated instantiation data types), and make calls to OpenCL to build and execute the kernel

A
> E;)sAlamos

NATIONAL LABORATORY

E5T. 1942

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| '| 980

OpenCL Backend: Simple Example

util_math.cl

:inline_ float lerp(float a, float b, float t)
{
return a + t*(b-a);

}

transform.cl

__kernel void transform(__global T_TYPE* input, __global T_TYPE* output)
{

unsigned int i = get_global_id(0);

output[i] = USER_OPERATORC(input[il]);
}

myOperator.inl

template <typename Inputlterator>
class myOperator

public:
typedef typename std::iterator_traits<Inputlterator>::value_type value_type;
Inputlterator input, temp, output; int n;
myOperator(Inputlterator input, int n) : input(input), n(n) { }

void operator()()
{

lathrust::transform(input.begin(), temp.begin(), n, new doublelt());

lathrust::transform(temp.begin(), output.begin(), n, new triplelt());

¥

struct doublelt : public lathrust::unary_function

{
doubleltO) { }

value_type operator()(value_type value)

return 2xvalue;

} , Pre—-processor
5

struct triplelt : public lathrust::unary_function

{
tripleltO { }

value_type operator((value_type value)
{
return 3*value;
}
=

kernel_source

1

. _inline__ float lerp(float a, float b, float t)
A
return a + t¥(b-a);
lathrust backend
int doubleltO(int value)
1 {

}

return 2xvalue;

__kernel void transform(__global int* input, __global int* output)
{

unsigned int i = get_global_id(0);

outputli] = doublelt(input[il);

Compiled Kernel

clCreateProgramWithSource; clBuildProgram

lathrust backend Compiled Kernel

kernel_source

user.cl / «
__inline__ float lerp(float a, float b, float t)

value_type doubleltO(value_type value) {
{ % return a + tx(b-a);

return 2+#value; }
} o

' ~int tripleltO(int value)
value_type tripleltO(value_type value) = {
p return 3*value;

return 3#value; }

}

__kernel void transform(__global int* input, __global int* output)
{

unsigned int i = get_global_id(0);

output[i] = triplelt(input[il);

OpenCL Backend: Advanced Topics

The PISTON backend can provide the OpenCL function generated from the user-
defined functor with access to the functor data by packaging the functor's data fields
in a struct and passing it to the OpenCL function

Large functor data fields are passed separately, and the backend replaces keywords
in the OpenCL data-parallel primitive implementations to extend the set of
parameters passed to the kernel and on to the user-defined function

Permutation iterators are similarly implemented by passing an additional field to the
kernel and replacing keywords in the OpenCL code with indexing into the
permutation field

The kernel source code is the same between executions of the same line of host code
(even though the data it is sent may differ), so kernel compilation can be
performance once at the beginning for each call of an lathrust wrapper, and the
compiled kernel reused whenever that call is executed

A
> E;)sAlamos

NATIONAL LABORATORY
E5T. 194

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA_U R_ 'I '| _ '| '| 980

OpenCL Backend: Functor Example

util_math.cl

__inline__ float lerp(float a, float b, float t)
{
return a + tx(b-a);

¥

transform.cl

__kernel void transform(__global T_TYPE* input, __global T_TYPE=* output,
__global void* vstate FIELD_PARAMETERS)
{

unsigned int i = get_global_id(0);

output[i] = USER_OPERATORC, input[i], vstate PASS_FIELDS);
¥

myOperator.inl

kernel_source

14

__inline__ float lerp(float a, float b, float t)
{

lathrust backend }fetum a+ te(b-a);

int offsetAndScale((int index, int value, OffsetAndScaleData* state, int* offsets)
{

return ((state->scaleFactor)*(value + offsets[index]));
o~ __kernel void transform(__global int* input, __global int* output, __global void* vstate,
__global voidx field1)
{

unsigned int i = get_global_id(0);
output[i] = offsetAndScale(i, inputli], vstate, field1);

template <typename Inputlterator> };’
class myOperator
{
public: . . .) i
typedef typename std::iterator_traits<Inputlterator>::value_type value_type; ClLreateProgram* IIhSOUI”CG- clBuddProgram
Inputlterator input, Inputlterator offsets, output; int n; value_type scaleFactor;
myOperator(Inputlterator input, Inputlterator offsets, value_type scaleFactor, int n) :
input(input), offsets(offsets), scaleFactor(scaleFactor), n(n) { }
void operatorO() .
{ :
lathrust::transform(input.begin(), output.begin(), n, new offsetAndScale(scaleFactor, offsets));
struct offsetAndScale : public lathrust::unary_function Compiled Kernel
{
typedef struct offsetAndScaleData : public lathrust::functorData
value_type scaleFactor;
} OffsetAndScaleData;
virtual int getStateSize() { return (sizeof(OffsetAndScaleData)); }
offsetAndScale(value_type scaleFactor, Inputlterator offsets)
{
OffsetAndScaleData* dstate = new OffsetAndScaleData;
dstate—>scaleFactor = scaleFactor; _
state = dstate; Pre processor
addField(xoffsets); user.cl
}

value_type operator()(int index, value_type value, OffsetAndScaleData* state,
value_type* offsets)
{

return ((state->scaleFactor)*(value + offsets[index]));

value_type offsetAndScale()(int index, value_type value, OffsetAndScaleData* state,
value_type* offsets)
{

return ((state->scaleFactor)*(value + offsets[index]));

)

	LAURPISTONTutorial
	PISTONTutorialR

