
Form 836 (7/06)

LA-UR-
Approved for public release;
distribution is unlimited.

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Title:

Author(s):

Intended for:

14-20777

VOLUME-OF-FLUID INTERFACE RECONSTRUCTION
ALGORITHMS ON NEXTGENERATION
COMPUTER ARCHITECTURES

Marianne Francois
Li-ta Lo
Christopher Sewell

Proceedings of the ASME 2014 4th Joint US-European Fluids
Engineering Division Summer Meeting and 12th International
Conference on Nanochannels, Microchannels, and
Minichannels. August 2014. Chicago, IL.

 1 Copyright © 20xx by ASME

Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting and
12th International Conference on Nanochannels, Microchannels, and Minichannels

FEDSM2014
August 3-7, 2014, Chicago, Illinois, USA

FINAL - FEDSM2014-21894

VOLUME-OF-FLUID INTERFACE RECONSTRUCTION ALGORITHMS ON NEXT-
GENERATION COMPUTER ARCHITECTURES

Marianne M. Francois
T-3: Fluid Dynamics and Solid Mechanics

Los Alamos National Laboratory
Los Alamos, NM 87545, USA

Li-Ta Lo
CCS-7: Applied Computer Science

Data Science at Scale Team
Los Alamos National Laboratory

Los Alamos, NM 87545, USA

 Christopher Sewell
CCS-7: Applied Computer Science

Data Science at Scale Team
Los Alamos National Laboratory

Los Alamos, NM 87545, USA

ABSTRACT
With the increasing heterogeneity and on-node parallelism

of high-performance computing hardware, a major challenge to
computational physicists is to work in close collaboration with
computer scientists to develop portable and efficient algorithms
and software. The objective of our work is to implement a
portable code to perform interface reconstruction using
NVIDIA’s Thrust library. Interface reconstruction is a
technique commonly used in volume tracking methods for
simulations of interfacial flows. For that, we have designed a
two-dimensional mesh data structure that is easily mapped to
the 1D vectors used by Thrust and at the same time is simple to
work with using familiar data structures terminology (such as
cell, vertices and edges). With this new data structure in place,
we have implemented a recursive volume-of-fluid initialization
algorithm and a standard piecewise interface reconstruction
algorithm. Our interface reconstruction algorithm makes use of
a table look-up to easily identify all intersection cases, as this
design is efficient on parallel architectures such as GPUs.
Finally, we report performance results which show that a single
implementation of these algorithms can be compiled to multiple
backends (specifically, multi-core CPUs, NVIDIA GPUs, and
Intel Xeon Phi coprocessors), making efficient use of the
available parallelism on each.

INTRODUCTION

The variety of hardware architectures used in high-
performance computing is large and continually growing.
These include vendor-specific variations on staples such as
GPUs and multi-core CPUs, as well as specialized architectures
such as IBM’s Blue Gene and the Cell processor, and emerging
technologies such as Intel’s MIC architecture. Supercomputer
architectures currently in use at national laboratories range
from Blue Gene (e.g., Argonne’s Intrepid) to Cell (e.g., Los
Alamos’s Roadrunner) to GPUs (e.g., Oak Ridge’s Jaguar
upgrade). The Department of Energy has stated that systems
using at least two different architectures will be built as part of
its exascale computing initiative.

Our objective is to develop portable and efficient codes
using the NVIDIA Thrust Library to run on various
architectures. The Thrust library [9] is a C++ template library
for CUDA. It provides a powerful, flexible and easy way to
develop parallel algorithms and data structures. It provides a
high-level interface to program on GPUs as well as multi-core
CPUs (since it supports OpenMP and TBB). However, the
Thrust library has a simplistic data model and only employs
one-dimensional vectors, making it challenging to perform
multi-dimensional physics-based simulation. Further Thrust’s
OpenMP backend is not optimized for all the different
architectures on which it may be run. We have previously
presented our PISTON framework, in which we have extended

 2 Copyright © 20xx by ASME

the Thrust library and implemented several common
visualization algorithms, such as contouring, using this data-
parallel model [4]. In this paper, we apply this methodology to
a volume tracking code using a further extension of Thrust and
PISTON, which we call PINION, to support simulation codes.

In the present work, we develop and implement a single
portable code using PINION to perform piecewise linear
interface reconstruction in two-dimensions. Interface
reconstruction is a technique used in the volume tracking
method [6] to limit numerical diffusion of the interface in the
calculation of interfacial flows. It allows one to compute the
location of the boundary (i.e. interface) between multiple
fluids/materials given the volume fraction information on a
mesh. Computations of incompressible interfacial flows on
GPUs has been presented in [2] and [5] using volume-of-fluid
method and in [10] using a level-set method. In these previous
works, the focus was on accelerating the Poisson solver of the
incompressible flow solver using GPUs. Here, our focus is only
on the interface reconstruction algorithm as a starting point.

The paper is organized as follows. First, we describe how
we have devised our two-dimensional mesh data structure and
mesh data operators. Then, we describe our algorithms to
achieve interface reconstruction. Finally, we present
performance results on various architectures.

MESH DATA STRUCTURE AND OPERATORS

In FORTRAN, a two-dimensional Cartesian structured
mesh is easily represented using a multi-dimensional array of
indices (i,j). In Thrust, however, only one-dimensional arrays
are available. The data model we have implemented in PINION
for this work, uses a higher level of abstraction than the one we
had in PISTON. In PINION, we provide a data model that
supports physics-model implementation, whereas in PISTON
none were provided, since PISTON is intended for visualization
applications.

Mesh Data Structure

The mesh data structure we employ here consists of three
one-dimensional arrays: list of cell ids, list of vertex ids and list
of edge ids. The nomenclature and numbering for our mesh is
illustrated in Figure 1.

Mesh Data Operators

To get our mesh connectivity between cell, vertex and edge
ids, and to do operations with our mesh data, we have
implemented several mesh operators to find adjacency,
boundaries, and neighbors. Our main mesh data operators are
listed below with a description of what they do:
vertex_to_edges_op Adjacency operator for vertices, given
one vertex id, return ids of 4 edges sharing the vertex as {Left,
Right, Bottom, Top}, -1 means non-existence/boundary edges.
 vertex_to_cells_op Adjacency operator for vertices, given one
vertex id, return ids of 4 cells sharing the vertex as {Lower
Left, Lower Right, Upper Left,Upper Right}, -1 means non-
existence/boundary cells.

 edge_to_vertices_op Boundary operator for edges, given one
edge id, return ids of the two end vertices as {Left, Right} or
{Bottom, Top}.
 edge_to_cells_op Coboundary/adjacency operator for edges,
given one edge id, return ids of 2 cell ids sharing the edge.
cell_to_edges_op Boundary operator for cells, given one cell
id, return ids of 4 edges as {Bottom, Right, Top, Left}.
cell_to_vertices_op Second order boundary operator for cells,
given one cell id, return ids of the 4 vertices as {Lower Left,
Lower Right, Upper Left, Upper Right}.
cell_von_neumman_neighbor_op Given a cell return the 4
orthogonal neighboring cells in the following order {West,
East, South, North}.
cell_moore_neighbor_op Given a cell return the 8 neighboring
cells in the following order {W, E, S, N, SW, SE, NW, NE}.
vertex_position_op Given a vertex id, return the coordinates of
the position of that vertex.
cell_center_position_op Given a cell id, return the coordinates
of the cell center position of that cell.
edge_center_position_op Given an edge id, return the
coordinates of the edge center position of an edge.
edge_normal_op Given an edge id, return the orthogonal
vector (i.e. the normal) to that edge. The direction of the normal
vector always points to the "right" side of the edge. The
magnitude of the vector is the length of the edge.

Figure 1. Mesh Data Structure Nomenclature and Numbering. The
cell vertex ids are shown in green, the edges ids in blue and cell
(face) ids in red.

ALGORITHMS AND IMPLEMENTATION WITH THRUST

The present piecewise linear interface reconstruction is
divided into 3 steps:

1. Volume fraction initialization,
2. Calculation of the volume fraction gradient,
3. Interface reconstruction using an iterative volume

matching procedure.

Volume Fraction Initialization
The volume fraction represents the volume (amount) of one
material in a given computational cell with respect to the total
volume of the computational cell. To initialize the volume
fraction in every computational cell, we use a divide and

 3 Copyright © 20xx by ASME

conquer recursive algorithm. Given the computational grid and
a mathematical expression for a shape (e.g. a circle) we
compute the volume fractions in every cell by testing whether
the cell vertices are inside or outside the ‘shape’. If all the
vertices are inside then the volume fraction of the given cell is
set to one and if all the vertices are outside the volume fraction
is set to zero. If the vertices of the cell are both inside and
outside, we proceed by dividing the cell into four. The
refinement is continued up to a specified level. In this work the
maximum level is set to 5.

Code sample:
thrust::transform(grid.cell_id_begin(),
grid.cell_id_end(), d_vof.begin(),
make_vof_init(grid, circle()));

Interface Normal Calculation

Given the volume fractions, α, the interface unit normal,
n̂ , is computed at the cell-center as the gradient of the volume
fraction using Green-Gauss:

n̂ = ∇α
∇α

 (1)

∇α ≈ αe n̂eAe
e=1

4

∑ (2)

where the index e, denotes the cell edge, Ae denotes the edge
area and n̂e denotes the unit vector normal. The edge volume
fractions are obtained by first averaging the cell-centered
volume fractions at cell vertices before averaging them on
edges. The unit interface normal calculation is equivalent of
using a 9-point stencil.

Code sample:
thrust::transform(grid.cell_id_begin(),
grid.cell_id_end(),d_vof_grad.begin(),
make_grad_vof(grid,vof_edge.begin(),
 d_area_edge.begin()));

Iterative Volume Matching Procedure

This step consists of finding the line equation that
intersects the computational cell and for which the resulting
bounded volume matches the initial material volume (given by
the cell volume fraction). It consists of finding ρ in the
following equation:

n̂ ⋅ x + ρ = 0 (3)
for which f ρ() =V ρ()−V tends to zero, where V denotes
volume.

In this work, we use a similar iterative procedure as the one
employed in [6]. At each iteration, the intersection points of the
line with the computational cell are found and the polygon area
is computed until the polygon area matches the volume
fraction. The main difference in our algorithm is the use of a
look-up table to identify the intersection cases. The type of

look-up table is standard in visualization algorithms [7]. Our
look-up table is shown in Figure 2. It gives the number of
vertices that are inside the line, the cell vertex ids, and the cell
edge ids that the line intersects. Two cases, case 8 and case 12,
are illustrated. Looking at case 8, {1,2,0,2,2,3,-1,-1} we see that
there is 1 vertex located on the outside of the interface that has
for vertex id 2.The line intersects two edges: the edge defined
between vertex id 0 and vertex id 2, and the edge defined
between vertex id 2 and vertex id 3. The "-1" values represent
no entry. Looking at case 12 {2,3,2,0,2,1,3,-1}, we see that
there are 2 vertices located on the outside of the interface and
these vertices are vertex id 3 and vertex id 2. The line intersects
two edges: the edge defined between vertex id 0 and vertex id
2, and the edge defined between vertex id 1 and vertex id 3.

Figure 2. Look-up table to identify intersection cases. Two
intersection cases (case 8 and case 12) are given as examples.

CODE GENERATION

In PINION, we need only a single version of source code
that runs on various architecture. In order to generate
executables that run on different backends (single-thread,
multi-thread and GPU) we simply construct different rules in
our CMake file by using different compilers and flags:

add_executable(Vof_2D_CPP Vof_2D.cpp)
set_target_properties(Vof_2D_CPP PROPERTIES

COMPILE_FLAGS "-
DTHRUST_DEVICE_SYSTEM=THRUST_DEVICE_SYSTEM_CPP -
std=c++0x")

add_executable(Vof_2D_OMP Vof_2D.cpp)
set_target_properties(Vof_2D_OMP PROPERTIES

COMPILE_FLAGS "-fopenmp -
DTHRUST_DEVICE_SYSTEM=THRUST_DEVICE_SYSTEM_OMP -
std=c++0x")

target_link_libraries(Vof_2D_OMP pthread gomp)

 4 Copyright © 20xx by ASME

cuda_add_executable(Vof_2D_GPU Vof_2D.cu)
target_link_libraries(Vof_2D_GPU pthread)

The benefit of a single version of source code is to

facilitate development and debugging. By using various
debugging and memory checking tools, and assuming the
backends are implemented correctly, the debugging process can
be performed on the single threaded CPU and does not have to
be repeated for other backends (multi-threaded CPU and the
GPU), hence saving significant effort.

RESULTS

In this section, we present performance results of our
single implementation of a piecewise linear interface
reconstruction algorithm. The test case considered is a circle of
radius 0.25 centered at (0.5,0.5) in a unit square domain. The
computational mesh is varied from 256x256 up to 8192x8192.
The tests are performed on various architectures: single-
threaded CPU, multi-core CPU, GPU and MIC(Intel Xeon Phi).

Our OpenMP results were obtained using our modified
version of Thrust, which includes our parallel OpenMP
implementation of the scan (prefix sum) operator [1].

Platform Characteristics

The CPU, OpenMP and GPU tests are performed on a HP
Z800 workstation that has two Intel Xeon X5660 processors
and a total of 32GB of memory. Each of the processors has 6
cores. Each of these cores can run two threads
"simultaneously". Thus we can run up to 24 OMP threads.

The GPU installed on this workstation is a Nvidia Quadro
6000. There are 448 cores with 6GB of memory
(http://www.nvidia.com/object/product-quadro-6000-us.html).

The MIC results are running in native mode on a single
Intel Xeon Phi Coprocessor on the Stampede system at the
Texas Advanced Computing Center
(https://www.xsede.org/web/guest/tacc-stampede#overview).
The Xeon Phi coprocessor has 61 cores and 512bit SIMD
registers.

Weak Scaling

We have timed the three main steps of our algorithm:
volume fraction initialization, volume fraction gradient, and
interface reconstruction. The timings are performed following
the standard timing procedure for the Thurst library. We
execute ten trials per algorithm and within these ten trials, there
are 100 repeated runs. The total time for each trial was
measured by gettimeofday() on the CPU/OMP backends and by
the CUDA event timer on the CUDA backend. The total time is
then divided by the one thousand total iterations to obtain the
reported average time. The results are shown in Figure 3,
Figure 4, and Figure 5 for the volume fraction initialization
algorithm, the volume fraction gradient algorithm and the
interface reconstruction algorithm, respectively.

As expected, the run time increases roughly linearly with
the domain size (grid size) on all platforms. The times on the
single-threated CPU are the slowest. Using multiple threads

(OMP) improves the performance. The MIC results are
roughly comparable to the OMP results. The benefit of GPUs
are clearly demonstrated for large grid size.

0.01

1.00

512 2048 8192
Grid Size (log scale)

Ti
m

e
in

 s
ec

on
ds

 (l
og

 s
ca

le
)

device

CPU

GPU

OMP

MIC

Vof Inititialization

Figure 3. Weak scaling plots for the volume fraction initialization
algorithm. The grid sizes range from 2562 to 81922.

0.01

1.00

512 2048 8192
Grid Size (log scale)

Ti
m

e
in

 s
ec

on
ds

 (l
og

 s
ca

le
)

device

CPU

GPU

OMP

MIC

Vof Gradient

Figure 4. Weak scaling plots for the calculation of the volume
fraction gradient (interface normal). The grid sizes range from 2562
to 81922.

 5 Copyright © 20xx by ASME

0.01

0.10

512 2048 8192
Grid Size (log scale)

Ti
m

e
in

 s
ec

on
ds

 (l
og

 s
ca

le
)

device

CPU

GPU

OMP

MIC

Interface Reconstruction

Figure 5. Weak scaling plots for the interface reconstruction
(iterative volume matching procedure) algorithm. The grid sizes
range from 2562 to 81922.

Strong Scaling

Figure 6 shows the strong scaling (for a constant grid
size problem) of the three algorithms with the number of
OpenMP threads. This demonstrates that our algorithms make
efficient use of the available parallelism.

0.01

0.10

1.00

2 8 32 128

Number of Threads (log scale)

T
i
m

e

i
n

s
e

c
o

n
d

s

(
l
o

g

s
c
a

l
e

)

algorithm

gradient

initialization

reconstruction

MIC Strong Scaling

Figure 6. Strong scaling obtained on the MIC for a constant grid
size of 1,0242.

We have also implemented distributed versions of these
algorithms based on our distributed extension of Thrust as
presented in [8]. This allows them to be run on multiple
instances of any of the supported architectures (for example,
across multiple CPUs, GPUs, or Xeon Phi coprocessors). In
our distributed backend, the data-parallel operators are
implemented by calling the Thrust shared-memory parallel
operators on each node, while using MPI to communicate
between nodes. Ghost cells for structured grids are handled
transparently by our distributed backend. We plan to present
the details of this implementation and performance results in an
upcoming paper.

CONCLUSION

We have implemented a two-dimensional piecewise linear
interface reconstruction algorithm using the NVIDIA Thrust
library and tested the performance of our algorithm for single
and multiple threads, as well as on a GPU and MIC
architectures. The interface reconstruction algorithm is
currently iterative; in the future we plan to implement an
analytical algorithm [3] to avoid the iteration procedure and
compare computational performance. We also intend to further
optimize a MIC-specific OpenMP backend to more fully take
advantage of the properties of this architecture, such as its wide
vector width. Future work will also include implementation in
3D and on other types of meshes.

NOMENCLATURE

α volume fractions
ρ constant in line equation

A area
e edge index
f function
n̂ unit normal
V volume

CPU Central Processing Unit
GPU Graphics Processing Unit
MIC Many Integrated Core
OMP Open Multi-Processing

ACKNOWLEDGMENTS
This work was performed under the auspices of the

National Nuclear Security Administration of the US
Department of Energy at Los Alamos National Laboratory
under Contract No. DE-AC52-06NA25396. This work is
supported by the Laboratory Directed Research and
Development Exploratory Research program under the project
“Physics-Based Data Models and Architecture-Optimized
Backends for a Portable Data-Parallel Computation Library”.
We acknowledge the use of XSEDE, supported by National
Science Foundation award number OCI-1053575. We would
also like to thank Jim Ahrens of Los Alamos National

 6 Copyright © 20xx by ASME

Laboratory for his guidance of the PISTON and PINION
projects. LA-UR-14-20777.

REFERENCES

[1] Blelloch G., Vector Models for Data-Parallel Computing,
MIT Press. ISBN 0-262-02313-X. 1990.

[2] Codyer S., Raessi M., and Khanna G., Using Graphics
Processing Units to accelerate numerical simulations of
interfacial incompressible flows, ASME Fluid Engineering
Conference, Puerto Rico, USA, 2012.

[3] Diot S., Francois M.M., Dendy E.D., An interface
reconstruction method based on analytical formulae for 2D
planar and axisymmetric arbitrary convex cells, submitted
to Journal of Computational Physics, 2103.

[4] Lo L-T., Sewell C., Ahrens J., PISTON: A Portable Cross-
Platform Framework for Data-Parallel Visualization
Operators, Eurographics Symposium on Parallel Graphics
and Visualization, May 13-14, 2012.

[5] Nagatake T., Kunugi T., Application of GPU to
computational multiphase fluid dynamics, IOP Conference
Series: Materials Science and Engineering, 10(1),
p012024, 2010.

[6] Rider W. Kothe D.B., Reconstructing volume tracking,
Journal of Computational Physics, 112-152, 1998.

[7] Schroeder W., Martin K., Lorensen B., Visualization
Toolkit, An Object-Oriented Approach to 3D Graphics,
Kitware, 2006.

[8] Sewell C, Lo L-T., Ahrens J., Portable Data-Parallel
Visualization and Analysis in Distributed Memory
Environments, IEEE Symposium on Large-Scale Data
Analysis and Visualization, October 13-14, 2013.

[9] Thrust Library, https://developer.nvidia.com/Thrust

[10] Zaspel P., Griebel M., Solving incompressible two-phase
flows on multi-GPU clusters, Computers and Fluids, 80,
356-364, 2013.

 7 Copyright © 20xx by ASME

	LAURCoverASME
	ASMEPaper

