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ABSTRACT 
With the increasing heterogeneity and on-node parallelism 

of high-performance computing hardware, a major challenge to 
computational physicists is to work in close collaboration with 
computer scientists to develop portable and efficient algorithms 
and software. The objective of our work is to implement a 
portable code to perform interface reconstruction using 
NVIDIA’s Thrust library. Interface reconstruction is a 
technique commonly used in volume tracking methods for 
simulations of interfacial flows. For that, we have designed a 
two-dimensional mesh data structure that is easily mapped to 
the 1D vectors used by Thrust and at the same time is simple to 
work with using familiar data structures terminology (such as 
cell, vertices and edges). With this new data structure in place, 
we have implemented a recursive volume-of-fluid initialization 
algorithm and a standard piecewise interface reconstruction 
algorithm. Our interface reconstruction algorithm makes use of 
a table look-up to easily identify all intersection cases, as this 
design is efficient on parallel architectures such as GPUs. 
Finally, we report performance results which show that a single 
implementation of these algorithms can be compiled to multiple 
backends (specifically, multi-core CPUs, NVIDIA GPUs, and 
Intel Xeon Phi coprocessors), making efficient use of the 
available parallelism on each.  

 
INTRODUCTION 

The variety of hardware architectures used in high-
performance computing is large and continually growing.  
These include vendor-specific variations on staples such as 
GPUs and multi-core CPUs, as well as specialized architectures 
such as IBM’s Blue Gene and the Cell processor, and emerging 
technologies such as Intel’s MIC architecture.  Supercomputer 
architectures currently in use at national laboratories range 
from Blue Gene (e.g., Argonne’s Intrepid) to Cell (e.g., Los 
Alamos’s Roadrunner) to GPUs (e.g., Oak Ridge’s Jaguar 
upgrade).  The Department of Energy has stated that systems 
using at least two different architectures will be built as part of 
its exascale computing initiative.   

Our objective is to develop portable and efficient codes 
using the NVIDIA Thrust Library to run on various 
architectures. The Thrust library [9] is a C++ template library 
for CUDA. It provides a powerful, flexible and easy way to 
develop parallel algorithms and data structures. It provides a 
high-level interface to program on GPUs as well as multi-core 
CPUs (since it supports OpenMP and TBB). However, the 
Thrust library has a simplistic data model and only employs 
one-dimensional vectors, making it challenging to perform 
multi-dimensional physics-based simulation. Further Thrust’s 
OpenMP backend is not optimized for all the different 
architectures on which it may be run. We have previously 
presented our PISTON framework, in which we have extended 
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the Thrust library and implemented several common 
visualization algorithms, such as contouring, using this data-
parallel model [4]. In this paper, we apply this methodology to 
a volume tracking code using a further extension of Thrust and 
PISTON, which we call PINION, to support simulation codes.  

In the present work, we develop and implement a single 
portable code using PINION  to perform piecewise linear 
interface reconstruction in two-dimensions. Interface 
reconstruction is a technique used in the volume tracking 
method [6] to limit numerical diffusion of the interface in the 
calculation of interfacial flows. It allows one to compute the 
location of the boundary (i.e. interface) between multiple 
fluids/materials given the volume fraction information on a 
mesh. Computations of incompressible interfacial flows on 
GPUs has been presented in [2] and [5] using volume-of-fluid 
method and in [10] using a level-set method. In these previous 
works, the focus was on accelerating the Poisson solver of the 
incompressible flow solver using GPUs. Here, our focus is only 
on the interface reconstruction algorithm as a starting point. 

The paper is organized as follows. First, we describe how 
we have devised our two-dimensional mesh data structure and 
mesh data operators. Then, we describe our algorithms to 
achieve interface reconstruction. Finally, we present 
performance results on various architectures. 
 
MESH DATA STRUCTURE AND OPERATORS 

In FORTRAN, a two-dimensional Cartesian structured 
mesh is easily represented using a multi-dimensional array of 
indices (i,j). In Thrust, however, only one-dimensional arrays 
are available. The data model we have implemented in PINION 
for this work, uses a higher level of abstraction than the one we 
had in PISTON. In PINION, we provide a data model that 
supports physics-model implementation, whereas in PISTON 
none were provided, since PISTON is intended for visualization 
applications. 

 
Mesh Data Structure 

The mesh data structure we employ here consists of three 
one-dimensional arrays: list of cell ids, list of vertex ids and list 
of edge ids. The nomenclature and numbering for our mesh is 
illustrated in Figure 1. 

 
Mesh Data Operators 

To get our mesh connectivity between cell, vertex and edge 
ids, and to do operations with our mesh data, we have 
implemented several mesh operators to find adjacency, 
boundaries, and neighbors. Our main mesh data operators are 
listed below with a description of what they do: 
vertex_to_edges_op Adjacency operator for vertices, given 
one vertex id, return ids of 4 edges sharing the vertex as {Left, 
Right, Bottom, Top}, -1 means non-existence/boundary edges. 
 vertex_to_cells_op Adjacency operator for vertices, given one 
vertex id, return ids of 4 cells sharing the vertex as {Lower 
Left, Lower Right, Upper Left,Upper Right}, -1 means non-
existence/boundary cells.  

 edge_to_vertices_op Boundary operator for edges, given one 
edge id, return ids of the two end vertices as {Left, Right} or 
{Bottom, Top}. 
 edge_to_cells_op Coboundary/adjacency operator for edges, 
given one edge id, return ids of 2 cell ids sharing the edge. 
cell_to_edges_op Boundary operator for cells, given one cell 
id, return ids of 4 edges as {Bottom, Right, Top, Left}. 
cell_to_vertices_op Second order boundary operator for cells, 
given one cell id, return ids of the 4 vertices as {Lower Left, 
Lower Right, Upper Left, Upper Right}. 
cell_von_neumman_neighbor_op Given a cell return the 4 
orthogonal neighboring cells in the following order {West, 
East, South, North}. 
cell_moore_neighbor_op Given a cell return the 8 neighboring 
cells in the following order {W, E, S, N, SW, SE, NW, NE}. 
vertex_position_op Given a vertex id, return the coordinates of 
the position of that vertex.  
cell_center_position_op Given a cell id, return the coordinates 
of the cell center position of that cell. 
edge_center_position_op Given an edge id, return the 
coordinates of the edge center position of an edge. 
edge_normal_op Given an edge id, return the orthogonal 
vector (i.e. the normal) to that edge. The direction of the normal 
vector always points to the "right" side of the edge. The 
magnitude of the vector is the length of the edge. 
 

 
Figure 1. Mesh Data Structure Nomenclature and Numbering. The 
cell vertex ids are shown in green, the edges ids in blue and cell 
(face) ids in red. 
 
ALGORITHMS AND IMPLEMENTATION WITH THRUST 

The present piecewise linear interface reconstruction is 
divided into 3 steps: 

1. Volume fraction initialization, 
2. Calculation of the volume fraction gradient, 
3. Interface reconstruction using an iterative volume 

matching procedure. 
 
Volume Fraction Initialization 
The volume fraction represents the volume (amount) of one 
material in a given computational cell with respect to the total 
volume of the computational cell. To initialize the volume 
fraction in every computational cell, we use a divide and 
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conquer recursive algorithm. Given the computational grid and 
a mathematical expression for a shape (e.g. a circle) we 
compute the volume fractions in every cell by testing whether 
the cell vertices are inside or outside the ‘shape’. If all the 
vertices are inside then the volume fraction of the given cell is 
set to one and if all the vertices are outside the volume fraction 
is set to zero. If the vertices of the cell are both inside and 
outside, we proceed by dividing the cell into four. The 
refinement is continued up to a specified level. In this work the 
maximum level is set to 5. 
 
Code sample: 
thrust::transform(grid.cell_id_begin(), 
grid.cell_id_end(), d_vof.begin(), 
make_vof_init(grid, circle())); 
 
Interface Normal Calculation 

Given the volume fractions, α, the interface unit normal, 
n̂ , is computed at the cell-center as the gradient of the volume 
fraction using Green-Gauss: 

n̂ = ∇α
∇α

   (1) 

∇α ≈ αe n̂eAe
e=1

4

∑   (2) 

where the index e, denotes the cell edge, Ae denotes the edge 
area and n̂e  denotes the unit vector normal. The edge volume 
fractions are obtained by first averaging the cell-centered 
volume fractions at cell vertices before averaging them on 
edges. The unit interface normal calculation is equivalent of 
using a 9-point stencil.  
 
Code sample: 
thrust::transform(grid.cell_id_begin(), 
grid.cell_id_end(),d_vof_grad.begin(), 
make_grad_vof(grid,vof_edge.begin(), 
              d_area_edge.begin())); 
 
Iterative Volume Matching Procedure 

This step consists of finding the line equation that 
intersects the computational cell and for which the resulting 
bounded volume matches the initial material volume (given by 
the cell volume fraction). It consists of finding ρ in the 
following equation: 

n̂ ⋅ x + ρ = 0    (3) 
for which f ρ( ) =V ρ( )−V  tends to zero, where V denotes 
volume.  

In this work, we use a similar iterative procedure as the one 
employed in [6]. At each iteration, the intersection points of the 
line with the computational cell are found and the polygon area 
is computed until the polygon area matches the volume 
fraction. The main difference in our algorithm is the use of a 
look-up table to identify the intersection cases. The type of 

look-up table is standard in visualization algorithms [7]. Our 
look-up table is shown in Figure 2. It gives the number of 
vertices that are inside the line, the cell vertex ids, and the cell 
edge ids that the line intersects. Two cases, case 8 and case 12, 
are illustrated. Looking at case 8, {1,2,0,2,2,3,-1,-1} we see that 
there is 1 vertex located on the outside of the interface that has 
for vertex id 2.The line intersects two edges: the edge defined 
between vertex id 0 and vertex id 2, and the edge defined 
between vertex id 2 and vertex id 3. The "-1" values represent 
no entry. Looking at case 12 {2,3,2,0,2,1,3,-1}, we see that 
there are 2 vertices located on the outside of the interface and 
these vertices are vertex id 3 and vertex id 2. The line intersects 
two edges: the edge defined between vertex id 0 and vertex id 
2, and the edge defined between vertex id 1 and vertex id 3. 

 

 
Figure 2. Look-up table to identify intersection cases. Two 
intersection cases (case 8 and case 12) are given as examples.  

 
CODE GENERATION 

In PINION, we need only a single version of source code 
that runs on various architecture. In order to generate 
executables that run on different backends (single-thread, 
multi-thread and GPU) we simply construct different rules in 
our CMake file by using different compilers and flags: 

 
add_executable(Vof_2D_CPP Vof_2D.cpp) 
set_target_properties(Vof_2D_CPP PROPERTIES 

COMPILE_FLAGS "-
DTHRUST_DEVICE_SYSTEM=THRUST_DEVICE_SYSTEM_CPP -
std=c++0x") 

 
add_executable(Vof_2D_OMP Vof_2D.cpp) 
set_target_properties(Vof_2D_OMP PROPERTIES 

COMPILE_FLAGS "-fopenmp - 
DTHRUST_DEVICE_SYSTEM=THRUST_DEVICE_SYSTEM_OMP -
std=c++0x") 

target_link_libraries(Vof_2D_OMP pthread gomp) 
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cuda_add_executable(Vof_2D_GPU Vof_2D.cu) 
target_link_libraries(Vof_2D_GPU pthread) 
 
The benefit of a single version of source code is to 

facilitate development and debugging. By using various 
debugging and memory checking tools, and assuming the 
backends are implemented correctly, the debugging process can 
be performed on the single threaded CPU and does not have to 
be repeated for other backends (multi-threaded CPU and the 
GPU), hence saving significant effort.  

 
RESULTS 

In this section, we present performance results of our 
single implementation of a piecewise linear interface 
reconstruction algorithm. The test case considered is a circle of 
radius 0.25 centered at (0.5,0.5) in a unit square domain. The 
computational mesh is varied from 256x256 up to 8192x8192. 
The tests are performed on various architectures: single-
threaded CPU, multi-core CPU, GPU and MIC(Intel Xeon Phi).  

Our OpenMP results were obtained using our modified 
version of Thrust, which includes our parallel OpenMP 
implementation of the scan (prefix sum) operator [1]. 

 
Platform Characteristics 

The CPU, OpenMP and GPU tests are performed on a HP 
Z800 workstation that has two Intel Xeon X5660 processors 
and a total of 32GB of memory. Each of the processors has 6 
cores. Each of these cores can run two threads 
"simultaneously". Thus we can run up to 24 OMP threads.  

The GPU installed on this workstation is a Nvidia Quadro 
6000. There are 448 cores with 6GB of memory 
(http://www.nvidia.com/object/product-quadro-6000-us.html). 

The MIC results are running in native mode on a single 
Intel Xeon Phi Coprocessor on the Stampede system at the 
Texas Advanced Computing Center 
(https://www.xsede.org/web/guest/tacc-stampede#overview). 
The Xeon Phi coprocessor has 61 cores and 512bit SIMD 
registers. 

 
Weak Scaling 

We have timed the three main steps of our algorithm: 
volume fraction initialization, volume fraction gradient, and 
interface reconstruction. The timings are performed following 
the standard timing procedure for the Thurst library. We 
execute ten trials per algorithm and within these ten trials, there 
are 100 repeated runs. The total time for each trial was 
measured by gettimeofday() on the CPU/OMP backends and by 
the CUDA event timer on the CUDA backend. The total time is 
then divided by the one thousand total iterations to obtain the 
reported average time. The results are shown in Figure 3, 
Figure 4, and Figure 5 for the volume fraction initialization 
algorithm, the volume fraction gradient algorithm and the 
interface reconstruction algorithm, respectively. 

As expected, the run time increases roughly linearly with 
the domain size (grid size) on all platforms. The times on the 
single-threated CPU are the slowest. Using multiple threads 

(OMP) improves the performance.  The MIC results are 
roughly comparable to the OMP results.  The benefit of GPUs 
are clearly demonstrated for large grid size.  
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Figure 3. Weak scaling plots for the volume fraction initialization 
algorithm. The grid sizes range from 2562 to 81922. 
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Figure 4. Weak scaling plots for the calculation of the volume 
fraction gradient (interface normal). The grid sizes range from 2562 
to 81922. 
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Figure 5. Weak scaling plots for the interface reconstruction 
(iterative volume matching procedure) algorithm. The grid sizes 
range from 2562 to 81922. 
 
Strong Scaling 

Figure 6 shows the strong scaling (for a constant grid 
size problem) of the three algorithms with the number of 
OpenMP threads.  This demonstrates that our algorithms make 
efficient use of the available parallelism. 
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Figure 6. Strong scaling obtained on the MIC for a constant grid 
size of 1,0242. 

We have also implemented distributed versions of these 
algorithms based on our distributed extension of Thrust as 
presented in [8].  This allows them to be run on multiple 
instances of any of the supported architectures (for example, 
across multiple CPUs, GPUs, or Xeon Phi coprocessors).  In 
our distributed backend, the data-parallel operators are 
implemented by calling the Thrust shared-memory parallel 
operators on each node, while using MPI to communicate 
between nodes. Ghost cells for structured grids are handled 
transparently by our distributed backend. We plan to present 
the details of this implementation and performance results in an 
upcoming paper. 
 
CONCLUSION 

We have implemented a two-dimensional piecewise linear 
interface reconstruction algorithm using the NVIDIA Thrust 
library and tested the performance of our algorithm for single 
and multiple threads, as well as on a GPU and MIC 
architectures. The interface reconstruction algorithm is 
currently iterative; in the future we plan to implement an 
analytical algorithm [3] to avoid the iteration procedure and 
compare computational performance. We also intend to further 
optimize a MIC-specific OpenMP backend to more fully take 
advantage of the properties of this architecture, such as its wide 
vector width.  Future work will also include implementation in 
3D and on other types of meshes.  

 
NOMENCLATURE 

α  volume fractions 
ρ  constant in line equation 
 
A  area 
e  edge index 
f  function 
n̂   unit normal 
V  volume 
 
CPU  Central Processing Unit 
GPU  Graphics Processing Unit 
MIC  Many Integrated Core 
OMP  Open Multi-Processing 
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