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Outline 

● Practical Introduction to High-Level Data Parallelism using Thrust and 
PISTON 

● Research Talk Overview of PISTON and PINION 

● Additional Tutorial Examples 

● Additional Details on Research Results 
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PRACTICAL INTRODUCTION TO HIGH-
LEVEL DATA PARALLELISM USING 

THRUST AND PISTON 
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Advantages of High-Level Parallel Programming 

● Supercomputer Hardware Advances Everyday 
– Higher and higher parallelism 

– Optimizations tailored to a certain architecture will be obsolete when you implement it 

● Parallel Programming APIs Come and Go 
– Nobody programs with shaders for GPGPU anymore 

– Will this also happen to OpenCL, CUDA, etc. in the future? 

● High-Level Parallelism 
– Will not change over time  

LA-UR-13-27416 LA-UR-14-20028 
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NVIDIA’s Thrust Library 

● Thrust is an open-source C++ template 
library developed by NVIDIA 

● It allows the user to write CUDA programs 
using an STL-like interface, without having 
to know CUDA-specific syntax or functions 

● In addition to CUDA, it has backends for 
OpenMP and Intel TBB, and can be 
extended to support additional backends 

● It implements many data-parallel primitives, 
with user-defined functors  

● It provides thrust::host_vector and 
thrust::device_vector, simplifying memory 
management and data transfer between 
the host and device 

 
LA-UR-12-26127 

Sample Thrust code to compute vector norm 
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How PISTON/PINION Leverage Thrust 

● Thrust provides: 

● An STL-like interface for memory management (host/device vectors) and data-parallel 
algorithms 

● Backend implementations of the data-parallel algorithms for CUDA, as well as slightly 
less-developed implementations for OpenMP and TBB 

● PISTON/PINION intend to provide: 

● A library of visualization and analysis operators implemented using Thrust 

● A data model for simulation meshes (e.g., VTK structured grids, unstructured grids, AMR) 

● Simulation operators (e.g., advection, interface reconstruction, etc.) 

● PISTON/PINION intend to enhance: 

● Non-CUDA backends (e.g., OpenCL prototype, optimize OpenMP for Xeon Phi, etc.) 

● Interface to support distributed memory operations 
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Sample Thrust Program 

LA-UR-14-20028 

> nvcc examples.cu -o examples 
> ./examples 
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Sample Thrust Program 
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Sample Thrust Program 
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Five Operations You Can Do with  
a Lot of Data in Parallel 

● Generate/Create 

– Automatically fill with programmatically defined data 

● Transform 

– Apply some “operation” to each element of the data 

– Also called “Map” in many contexts 

● Compact 

– Take only the elements in which you are interested 

– Also called “Filter” in many contexts 

● Expand 

– The opposite of Compact 

– Create a larger data set from a smaller data set 

● Aggregate 

– Calculate a “summary” of your data (e.g., sum or average) 

– Also called “Reduce” or “Fold” 

– “Scan” also provides all intermediate values 

LA-UR-13-27416 LA-UR-14-20028 
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Simple Examples with Thrust Pseudocode 

● Generate 
thrust::sequence(0,4)  0  1  2  3  4 

● Transform 
input                  4  5  2  1  3 
thrust::transform(+1)  5  6  3  2  4 

● Compact 
input                  4  5  2  1  3 
thrust::copy_if(even)  4  2 

● Expand 
input                  4  5  2  1  3 
thrust::for_each(x,2x) 4  8  5 10  2  4  1  2  3  6 

● Aggregate 
input                  4  5  2  1  3 
thrust::reduce(+)      15 
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Generate Data in Parallel 

● Many copies of a certain constant value 
– // Ten elements with initial value of integer 1 

thrust::device_vector<int> x(10, 1); 

● A sequence of increasing or decreasing values 
– // Allocate space for ten integers, uninitialized 

thrust::device_vector<int> y(10); 
// Fill the space with integers 
thrust::sequence(y.begin(), y.end(), 5, 2); 

● Random Values 
– Multiple copies of a random number generator 

– Give each one a different seed 

LA-UR-13-27416 LA-UR-14-20028 
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Transform: Vector Addition 

● Apply a binary operator “plus” to each element in x and y 

– thrust::transform(x.begin(), x.end(), // begin and end of the 
                                      // first input vector 
y.begin(),                            // begin of the second 
                                      // input vector 
result.begin(),                       // begin of the result 
                                      // vector 
thrust::plus<int>());                 // predefined integer 
                                      // addition 

–      x: 1  1  1  1  1  1  1  1  1  1 
                  + 
     y: 5  7  9 11 13 15 17 19 21 23 
                  = 
result: 6  8 10 12 14 16 18 20 22 24 

LA-UR-13-27416 LA-UR-14-20028 
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Transform: Uniform Sampling  
of a Mathematical Function 

● Q: How are we going to generate something more complicated? 
A: Start from some sequence and apply some transformation 

● Sampling the function f(x) = x2 in the interval of [0, 1] 
– // Generate a sequence of xi in [0,1] with dx=0.1 

// in between each of them 
float dx = 1.0f/10.0f; 
thrust::sequence(x.begin(), x.end(), 0.0f, dx); 
 
// Apply the square operation to each of the xi  
// to transform into f(xi) = yi = xi2 
thrust::transform(x.begin(), x.end(), 
                  y.begin(), 
                  square()); 

LA-UR-13-27416 LA-UR-14-20028 

x: 0.0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1.0 
y: 0.0  0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1.0 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980 

Reduce: Simple Numerical Integration 

● Apply what we learned to estimate the 
area under a curve  

● Create a constant vector of widths 

● Create a vector of heights from the 
function values 

● Apply multiply operation on each 
element of width and height 

● Sum all the computed areas to get the 
total area 

● In calculus, this is a method of 
estimating the integral  ∑∫
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Simple Numerical Integration: Example 

    
thrust::device_vector<int> width(11, 0.1);  
width       =  0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1 
 
thrust::sequence(x.begin(), x.end(), 0.0f, 0.1f); 
x           =  0.0   0.1   0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9   1.0 
 
thrust::transform(x.begin(), x.end(), height.begin(), square());  
height      =  0.0  0.01  0.04  0.09  0.16  0.25  0.36  0.49  0.64  0.81   1.0 
 
thrust::transform(width.begin(), width.end(), height.begin(), area.begin(), 
thrust::multiplies<float>()) 
area        =  0.0 0.001 0.004 0.009 0.016 0.025 0.036 0.049 0.064 0.081   0.1 
 
total_area = thrust::reduce(area.begin(), area.end()); 
total_area =  0.385 
 
 
 
thrust::inclusive_scan(area.begin(), area.end(), accum_areas.begin()); 
accum_areas =  0.0 0.001 0.005 0.014 0.030 0.055 0.091 0.140 0.204 0.285 0.385 
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Scan: Simple Numerical Integration 

● What happens if we are interested in the integral  
 
on the interval [0, 1] instead of just a number? 

● Calculate a running sum by using scan 

● thrust::inclusive_scan(y_dx.begin(), y_dx.end(), 
                       F.begin()); 

● f(xi)*dx =  0.0 0.001 0.004 0.009 0.016 0.025 0.036 0.049 0.064 0.081   0.1 
F(t)     =  0.0 0.001 0.005 0.014 0.030 0.055 0.091 0.140 0.204 0.285 0.385 

● The last element of the scan (0.385) is the same as the output of reduce 

● In mathematical terms,  
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Scan: Calculating the Fibonacci Sequence  
by Matrix Multiplication 

● The reduce and scan operators can also work with a user defined type 

● The Fibonacci Sequence is defined as 
                                             with  

● By “unrolling” the recurrence we have 

 

 

● Thus we can compute Fn by matrix multiplication 
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Fibonacci Sequence using a Matrix Scan 

LA-UR-14-20028 



5     6     2     1    2     5     4     1     3     8     2     7    9     2     4     3    

5   11   13   14    2     7    11  12    3    11  13   20    9    11  15  18    

 0    14  12   20  

 0   14   26   46  

0                         14                        26                        46 

5    11   13  14   16   21  25   26  29   37   39  46   55   57  61   64 

thrust::inclusive_scan 

thrust::inclusive_scan 

MPI_Gather 

MPI_Scatter 

thrust::transform 

    P0                   P1                 P2                 P3               
Alternative: M

PI_Exscan 

Distributed Scan Algorithm 
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0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 
 
0  1  2  5  4  9  6 13  8 17 10 21 12 25 14 29 
 
0  1  2  6  4  9  6 22  8 17 10 38 12 25 14 54 
 
0  1  2  6  4  9  6 28  8 17 10 38 12 25 14 92 
 
0  1  2  6  4  9  6 28  8 17 10 38 12 25 14 120 
 
 
0  1  2  6  4  9  6 28  8 17 10 38 12 25 14  0 
 
 
0  1  2  6  4  9  6  0  8 17 10 38 12 25 14 28 
 
0  1  2  0  4  9  6  6  8 17 10 28 12 25 14 66 
 
0  0  2  1  4  6  6 15  8 28 10 45 12 66 14 91 
 
0  0  1  3  6 10 15 21 28 36 45 55 66 78 91 105 
 

Up-sweep (reduce) 
 
for d = 0 to log2n-1 do 
  for k from 0 to n-1 by 2d+1 pardo 
    x[k+2d+1-1] = x[k+2d-1] + x[k+2d+1-1] 

x[n-1] = 0 

Down-sweep 
 
for d = log2n-1 down to 0 do 
  for k from 0 to n-1 by 2d+1 pardo 
    t = x[k+2d-1] 
    x[k+2d-1] = x[k+2d+1-1] 
    x[k+2d+1-1] = t + x[k+2d+1-1] 

Tree Scan Algorithm 

LA-UR-14-20028 
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Compaction: Finding Prime Numbers  
Using the Sieve of Eratosthenes 

● Start with a vector containing the sequence of integers from 2 to N 

● The first element in this vector is prime 

● Use compaction to copy only elements of the vector not divisible by 
this prime into an updated vector (Thrust copy_if operator) 

● The second element in this vector is prime 

● Repeat the two steps above until you reach the end of the vector 

● 2  3  4  5  6  7  8  9 10 11 12 13 14 15 
2  3  5  7  9 11 13 15 
2  3  5  7 11 13 
2  3  5  7 11 13 
2  3  5  7 11 13 
2  3  5  7 11 13 

LA-UR-13-27416 LA-UR-14-20028 
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Boid Simulation 

● Simulate flocking behavior of a group of “boids” 

● At each time step, velocities are adjusted based on three parameters, each dependent only upon 
observing other nearby boids: 

● Cohesion: Each boid wants to move towards the centroid of other boids in its vicinity, to join the flock 

● Separation: Each boid wants to move away from other boids that are too close to it, to avoid collisions 

● Alignment: Each boid wants to adjust its velocity (direction and magnitude) to match that of other 
boids in its vicinity, to move in sync with the flock 

● Positions are then updated for the next time step based on the new velocities 

● Thrust transform functions are used in order to parallelize the computations for all the boids 

● Functors are used to compute the cohesion, separation, and alignment parameters for a boid, 
and to update its velocity and position 

● Reference: http://syntacticsalt.com/2011/03/10/functional-flocks/ by Matt Sottile 

LA-UR-13-27416 LA-UR-14-20028 
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Boid Simulation Video 
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Outline of Flock Simulation Class 
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Main simulation loop 

LA-UR-13-27416 LA-UR-14-20028 
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Cohesion Term 
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Separation Term 

LA-UR-13-27416 LA-UR-14-20028 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980 

Alignment Term 

LA-UR-13-27416 LA-UR-14-20028 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980 

Updating Velocities 

( )awswcwwvv ascvtt +++=+1

LA-UR-13-27416 LA-UR-14-20028 
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Updating Positions 

tvxx ttt ∆+=+1
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Bouncing off boundaries 
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Interop 

● Without interop, separate memory is used on the GPU for computation 
results and for rendering, and data transfer goes through the CPU 

● With interop, a shared region of memory on the GPU is used both for 
computation and for rendering, eliminating the slow GPU-CPU data transfers 

GPU 

Computation 
Results 

Vertices for 
Rendering 

CPU 

Data 

GPU 

Shared 
Vertex Buffer 

Without interop With interop 

LA-UR-13-27416 LA-UR-14-20028 
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Conclusion 

● The example codes we showed are independent of the location of 
data and execution 

● It can be executed serially on CPU or parallel backends 

● Debug on CPU during development; use parallel execution in 
“production” 

● Extend to other languages and libraries 
– STL in C++ 

– Copperhead in Python 

– SQL/LINQ for databases 

LA-UR-13-27416 LA-UR-14-20028 
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High-Level Data-Parallelism Future-Proofs Your Code 

● The high-level parallel algorithms you write today will still work with 
new hardware in the future 

● In fact, they will only get faster! 

● The skills you learn in developing high-level parallel algorithms will 
still be applicable in the future even as computing technology 
improves 

LA-UR-13-27416 LA-UR-14-20028 
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Obtaining Thrust and Data-Parallel Examples 

● Obtain Thrust: 

● Part of CUDA: https://developer.nvidia.com/cuda-downloads 

● Or, just get Thrust: http://thrust.github.com 

● Obtain the examples from this presentation from github: 
https://github.com/losalamos/PISTON/tree/master/tutorial/NMSCC13 

● If you have questions, contact Chris (csewell@lanl.gov) 

LA-UR-13-27416 LA-UR-14-20028 
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Instructions for Example Code 

● This project uses CMake (available at http://www.cmake.org/cmake/resources/software.html).  
Create a build directory,  and run ccmake “path-to-source-directory".   

● Run with or without CUDA 

● To run the CUDA backend, you need an NVIDIA GPU (that is CUDA-capable) and an installation 
of NVIDIA's CUDA toolkit (available at https://developer.nvidia.com/cuda-downloads), and the 
location of this installation should be provided in the CMake configuration. 

● Alternatively, you can run just the OpenMP backend by downloading Thrust 1.7 rather than 
CUDA (available at thrust.github.com).  In the CMake configuration, set USE_CUDA to OFF, and 
provide the location of Thrust in the CMake configuration for the THRUST_DIR CMake variable.   
If using a Mac,  and your default compiler uses Clang, you need to use set the old gcc 
(/usr/bin/g++) instead of letting CMake to figure which compiler to use. 

● Once you have set all of the CMake variables, select the configure and then generate options.  
You can then quit CMake and run make to build the examples. 
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RESEARCH TALK OVERVIEW OF PISTON 
AND PINION 

LA-UR-14-20028 
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SDAV VTK-m Frameworks 

● Objective: Enhance existing multi/many-core technologies in anticipation of in 
situ analysis use cases with LCF codes 

● Benefit to scientists: These frameworks will make it easier for domain 
scientists’ simulation codes to take advantage of the parallelism available on 
a wide range of current and next-generation hardware architectures, 
especially with regards to visualization and analysis tasks  

● Projects 

● EAVL, Oak Ridge National Laboratory 

● DAX, Sandia National Laboratory 

● DIY, Argonne National Laboratory 

● PISTON, Los Alamos National Laboratory 

● Work on integrating these projects with VTK is on-going, in collaboration with 
Kitware   

 
LA-UR-13-23729 LA-UR-14-20028 
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PISTON: A Portable Data-Parallel Visualization and Analysis 
Framework 

 Goal: Portability and performance for visualization and analysis operators on current and 
next-generation supercomputers 

 Main idea: Write operators using only data-parallel primitives (scan, reduce, etc.) 

 Requires architecture-specific optimizations for only for the small set of primitives 

 PISTON is built on top of NVIDIA’s Thrust Library 

LA-UR-13-23729 LA-UR-14-20028 
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Motivation and Background 

● Current production visualization software does not take full advantage of acceleration 
hardware and/or multi-core architecture 

● Research on accelerating visualization operations are mostly hardware-specific; few were 
integrated in visualization software 

● Standards such as OpenCL may allow program to run cross-platform, but usually still requires 
many architecture specific optimizations to run well 

● Data parallelism: independent processors performs the same task on different pieces of data 
(see Blelloch, “Vector Models for Data Parallel Computing”)  

● Due to the massive data sizes we expect to be simulating we expect data parallelism to be a 
good way to exploit parallelism on current and next generation architectures 

● Thrust is a NVidia C++ template library for CUDA. It can also target other backends such as 
OpenMP, and allows you to program using an interface similar the C++ Standard Template 
Library (STL) 

 
LA-UR-13-23729 LA-UR-14-20028 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980 

Videos of PISTON in Action 

LA-UR-13-23729 LA-UR-14-20028 
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Brief Introduction to Data-Parallel Programming 
and Thrust 

 

● Sorts 

● Transforms 

● Reductions 

● Scans 

● Binary searches 

● Stream compactions 

● Scatters / gathers 

 

 

 

Challenge: Write operators in terms of 
these primitives only 
 
Reward:  Efficient, portable code 

What algorithms does Thrust provide? 
 

LA-UR-13-23729 LA-UR-14-20028 
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Isosurface with Marching Cube – the Naive Way 

● Classify all cells by transform 

● Use copy_if to compact valid cells. 

● For each valid cell, generate same 
number of geometries with flags. 

● Use copy_if to do stream compaction 
on vertices. 

● This approach is too slow, more than 
50% of time was spent moving huge 
amount of data in global memory. 

● Can we avoid calling copy_if and 
eliminate global memory movement? 

LA-UR-13-23729 LA-UR-14-20028 
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Isosurface with Marching Cube – Optimization 

● Inspired by HistoPyramid 

● The filter is essentially a mapping 
from input cell id to output vertex id 

● Is there a “reverse” mapping? 

● If there is a reverse mapping, the 
filter can be very “lazy” 

● Given an output vertex id, we only 
apply operations on the cell that 
would generate the vertex 

● Actually for a range of output vertex 
ids 

0 1 2 5 4 3 6 

0 

1 
2 3 4 

5 
6 

7 

8 
9 
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Isosurface with Marching Cubes Algorithm 

LA-UR-13-23729 LA-UR-14-20028 
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Variations on Isosurface: Cut Surfaces and Threshold 

● Cut surface 

● Two scalar fields, one for generating 
geometry (cut surface) the other for scalar 
interpolation 

● Less than 10 LOC change, negligible 
performance impact to isosurface 

● One 1D interpolation per triangle vertex 

● Threshold 

● Classify cells, this time based on whether 
value at each vertex falls within threshold 
range, then stream compact valid cells and 
generate geometry for valid cells  

● Additional pass of cell classification and 
stream compaction to remove interior cells  
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Additional Operators 

Our implementations 

● Glyphs 

● KD-Tree Construction 

● Halo finder for cosmology 
simulations 

● “Boid” simulation  
(flocking birds) 

Data Structures 
    Graphs: Neighbor reducing, distributing excess across edges 
    Trees: Leaffix and rootfix operations, tree manipulations 
    Multidimensional arrays 
Computational Geometry 
    Generalized binary search 
    k-D tree 
    Closest pair 
    Quickhull 
    Merge Hull 

Graph Algorithms 
    Minimum spanning tree 
    Maximum flow 
    Maximal independent set 
Numerical Algorithms 
    Matrix-vector multiplication 
    Linear-systems solver 
    Simplex 
    Outer product 
    Sparse-matrix multiplication 

Blelloch’s “Vector Models for Data-Parallel Computing” 

LA-UR-13-23729 LA-UR-14-20028 
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PISTON Performance 
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Integration with VTK and ParaView 

● Filters that use PISTON data types and algorithms integrated into VTK and ParaView 

● Utility filters interconvert between standard VTK data format and PISTON data format 
(thrust device vectors) 

● Supports interop for on-card rendering 
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Extending PISTON’s Portability: Architectures (1/3) 

● Prototype OpenCL backend 

● Successfully implemented isosurface and cut plane operators in OpenCL with code 
almost identical to that used for the Thrust-based CUDA and OpenMP backends 

● With interop on AMD FirePro V7800, we can run at about 6 fps for 256^3 data set 
(2 fps without interop) 

● Renderer  

● Allows generation of images on systems without OpenGL  

● Rasterizing and ray-casting versions (using KD-Tree)  
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Extending PISTON’s Portability: Architectures (2/3) 

● Inter-node (distributed memory) parallelism 

● VTK Integration handles domain 
decomposition / image compositing 

● Distributed implementations of Thrust 
primitives using MPI 

– User can treat data as single vectors even 
though values are distributed across nodes 

– Regular Thrust primitives are called for on-
node work, so it takes advantage of 
parallelism both on nodes and across 
nodes 

– Implemented isosurface and KD-tree 
construction algorithms using distributed 
PISTON 
 

Distributed Scan Algorithm 

Isosurface of 3600x2400x42 ocean temperature data computed on 4 GPUs 
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Extending PISTON’s Portability: Architectures (3/3) 
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Extending PISTON’s Portability: Data Types 

● Curvilinear coordinates 

● Multiple layers of coordinate transformations 

● Due to kernel fusion, very little performance 
impact 

● Unstructured / AMR data 

● Tetrahedralize uniform grid or unstructured grid 
(e.g., AMR mesh) 

● Generate isosurface geometry based on look-up 
table for tetrahedral cells 

● Next step: Develop PISTON operator to 
tetrahedralize grids, and/or to compute 
isosurface directly on AMR grid  
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PISTON In-Situ 

● VPIC (Vector Particle in Cell) Kinetic Plasma Simulation Code 

● Implemented an in-situ adapter based on Paraview 
CoProcessing Library (Catalyst) 

● PISTON contour pipeline using ParaView’s PISTON integration 

● CoGL 

● Stand-alone meso-scale simulation code developed as part of 
the Exascale Co-Design Center for Materials in Extreme 
Environments 

● Studies pattern formation in ferroelastic materials using the 
Ginzburg–Landau approach 

● Models cubic-to-tetragonal transitions under dynamic strain 
loading 

● Simulation code and in-situ viz implemented using PISTON  

Output of PISTON contour filter on Hhydro charge 
density at one timestep of VPIC simulation 

PISTON in-situ visualization of  CoGLGinzburg-Landau 
simulation 
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PISTON’s Companion Project: PINION 

● A portable, data-parallel software framework for physics simulations 

● Data structures that allow scientists to program in a way that maps easily to the problem domain rather 
than dealing directly with 1D host/device vectors 

● Operators that provide data-parallel implementations of analysis and computational functions often used 
in physics simulations 

● Backends that optimize implementations of data parallel primitives for one or two emerging 
supercomputer hardware architectures 

 

LA-UR-13-23729 LA-UR-14-20028 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980 

ADDITIONAL TUTORIAL EXAMPLES 
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Tutorials 

● Be a Thrust user 

● Thrust QuickStartGuide examples 

● Be a PISTON user 

● tutorial1{OMP/GPU}: create a tangle field and apply the PISTON isosurface operator 

● demo{OMP/GPU}: load a VTK structured grid from a file and apply the PISTON 
isosurface, cut plane, or threshold operator 

● Be a PISTON developer 

● tutorial2{OMP/GPU}: write a simple simulation (boid flocking) and a simple visualization 
operator (glyphs) using Thrust primitives, and chain them together (optionally using 
interop with CUDA) 

● Be a data-parallel algorithm designer using PISTON 

● tutorial3{OMP/GPU}: use data parallel primitives to design a KD-tree algorithm 
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Tutorial 1: Use PISTON isosurface operator (1/2) 
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Tutorial 1: Use PISTON isosurface operator (2/2) 

LA-UR-14-20028 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980 

Tutorial 2: Boid Simulation 

● Already covered in first section 
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Tutorial 3: KD-Tree 
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KD Tree: Overview 

                       Point Ids           X Ranks            Y Ranks 

computeGlobalRanks  0 1 2 3 4 5 6 7    1 6 0 2 7 3 4 5    0 5 2 3 7 6 4 1 

computeFlags       F T F F T F T T    F T F F T F T T    F T F F T F T T 

segmentedSplit      0 2 3 5 1 4 6 7    1 0 2 3 6 7 4 5    0 2 3 6 5 7 4 1 

0 0 0 0 1 1 1 1     F F F F T T T T    F F F F T T T T    F F F F T T T T 

renumberRanks                          1 0 2 3 2 3 0 1    0 1 2 3 2 3 1 0 

computeFlags        F F T T T T F F    F F T T T T F F    F F T T T T F F 

segmentedSplit      0 2 3 5 6 7 1 4    1 0 2 3 0 1 2 3    0 1 2 3 1 0 2 3 

0 0 1 1 2 2 3 3     F F T T F F T T    F F T T F F T T    F F T T F F T T 

renumberRanks                          1 0 0 1 0 1 0 1    0 1 0 1 1 0 0 1 
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KD Tree: computeGlobalRanks 

A  Input coordinates    2.9 8.9 2.4 6.4 9.3 6.9 7.5 7.6 

B  CountingIterator(0)    0   1   2   3   4   5   6   7 

C  sort_by_key(A,B)     2.4 2.9 6.4 6.9 7.5 7.6 8.9 9.3 

                          2   0   3   5   6   7   1   4 

D  scatter(B,C)           1   6   0   2   7   3   4   5 
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KD Tree: computeFlags 

A  Input ranks                               1 6 0 2 7 3 4 5 

B  Input segmentIds                          0 0 0 0 0 0 0 0  

C  CountingIterator(1)                       1 2 3 4 5 6 7 8 

D  Reverse inclusive_scan_by_key(B,C,max)    8 8 8 8 8 8 8 8   
// # elements in segment 

E  transform(E[i]=D[i]/2)                    4 4 4 4 4 4 4 4   
// # median index 

F  transform(F[i]=A[i]>=E[i])                F T F F T F T T 
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KD Tree: segmentedSplit 

A  Input pointIds                                                  0 2 3 5 1 4 6 7 

B  Input flags                                                     F F T T T T F F 

C  Input segmentIds                                                0 0 0 0 1 1 1 1 

D  exclusive_scan_by_key(C,B)                                      0 0 0 1 0 1 2 2 
// total number of true flags preceding in segment 

E  CountingIterator(0)                                             0 1 2 3 4 5 6 7 

F  inclusive_scan_by_key(C,E,min)                                  0 0 0 0 4 4 4 4 
// total number of elements in previous segments 

G  CountingIterator(1)                                             1 2 3 4 5 6 7 8 

H  Reverse inclusive_scan_by_key(C,G,max)                          4 4 4 4 8 8 8 8  
// index of last element in its segment (+1) 

I  inclusive_scan_by_key(C,inverse(B))                             1 2 2 2 0 0 1 2 
// total number of false flags so far in segment  

J  transform(J[i]=(if(B[i]) F[i]+I[H[i]-1]+D[i] else F[i]+I[i]-1)) 0 1 2 3 6 7 4 5 

K  scatter(A,J)                                                    0 2 3 5 6 7 1 4 
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KD Tree: renumberRanks 

A  Input ranks                                         0 2 3 6 5 7 4 1 

B  Input flags                                         F F F F T T T T 

C  Input segmentIds                                    0 0 0 0 1 1 1 1 

D  ConstantIterator(1)                                 1 1 1 1 1 1 1 1 

E  exclusive_scan_by_key(C,D)                          0 1 2 3 0 1 2 3 

F  scatter(E,A)                                        0 3 1 2 2 0 3 1 

G  scatter(B,A)                                        F T F F T T F T 

H  segmentedSplit(F,G)                                 0 1 2 3 3 2 0 1 

I  CountingIterator(0)                                 0 1 2 3 4 5 6 7 

J  inclusive_scan_by_key(C,I,min)                      0 0 0 0 4 4 4 4 
// total number of elements in previous segments 

K  transform(H+J)                                      0 1 2 3 7 6 4 5 

L  scatter(E,K)                                        0 1 2 3 2 3 1 0                  
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KD Tree: renumberRanks (further segmented) 

A  Input ranks                                         0 1 2 3 1 0 2 3 

B  Input flags                                         F F T T F F T T 

C  Input segmentIds                                    0 0 1 1 2 2 3 3 

D  Input pre-split segmentIds                          0 0 0 0 1 1 1 1 

E  CountingIterator(0)                                 0 1 2 3 4 5 6 7   

F  inclusive_scan_by_key(D,E,min)                      0 0 0 0 4 4 4 4 

G  transform(A+F)                                      0 1 2 3 5 4 6 7 

H  ConstantIterator(1)                                 1 1 1 1 1 1 1 1 

I  exclusive_scan_by_key(C,H)                          0 1 0 1 0 1 0 1 

J  scatter(I,G)                                        0 1 0 1 1 0 0 1 

K  scatter(B,G)                                        F F T T F F T T 

L  segmentedSplit(J,K,C)                               0 1 0 1 1 0 0 1 

M  inclusive_scan_by_key(C,E,min)                      0 0 2 2 4 4 6 6 

N  transform(L+M)                                      0 1 2 3 5 4 6 7 

O  scatter(I,N)                                        0 1 0 1 1 0 0 1                       
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ADDITIONAL DETAILS ON RESEARCH 
RESULTS 

LA-UR-14-20028 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980 

Distributed Data Parallelism 

● Goal: Allow developer to write data-parallel algorithms in the same way whether vectors 
are actually stored on one node or multiple distributed nodes 

● Related work 

● Guy Blelloch: data parallel algorithms, including nested data parallelism using 
segment descriptors 

● Bergstrom and Reppy: port Blelloch’s NESL language to GPUs 

● Strengert, Muller, Dachsbacher, Ertl, Frey: CUDASA extends CUDA to run across 
multiple GPUs, presenting distributed shared memory to developer as global arrays 

● OpenMPI and OpenRTE: improve MPI to run well across large heterogeneous systems 

● Libraries for writing parallel code: Thrust, STAPL, Dax, EAVL, DIY  

● Our contribution:  Portable performance on-node and across nodes with same easy-to-
use STL-like API, supporting many algorithms including use of nested parallelism 
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Distributed Data-Parallel Primitives 

● Created a distributed wrapper for Thrust which handles the 
communication in the backend using MPI while still calling the standard 
Thrust library to take advantage of available on-node parallelism 

● For example, call dthrust::scan(input.begin(), input.end(), output.begin()) 
instead of thrust::scan(input.begin(),  
input.end(), output.begin()) 

● Operators implemented 

● Data Transfer Functions (host to device and device to host) 

● Rebalance and Shift 

● Transform, Scan, Segmented Scan, Scatter, Gather, Reduce 

● Upper bound (binary search), sort, sort by key 
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Distributed Scan 
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Code for Distributed Scan Backend 
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Algorithms Built Using the Distributed Primitives 

● Isosurface 

● Same algorithm as in our EGPGV paper, generating a “reverse map” from output 
vertex index to input cell index, allowing it to “lazily” apply operations only to cells 
that will generate the output vertices 

● Generates “triangle soup”, but generated vertices could potentially be welded into 
a triangle strip using data-parallel algorithm in Thrust weld_vertices example 

● Communication overhead is low, but load may not be balanced 

● KD-tree construction 

● Generally based on algorithm from Blelloch’s dissertation, but tailored to Thrust API 

● Uses nested data parallelism, creating sub-trees top-down 

● Points may have to be moved to a different processor in first log2(p) levels 
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Code for Distributed Isosurface Algorithm 
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KD Tree: Overview 
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KD Tree: Segmented Split 
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KD Tree: Renumber Ranks 

LA-UR-13-27797 LA-UR-14-20028 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980 

Isosurface Weak Scaling on CPUs 

3D Isosurface Generation: OpenMP Compute Rates on 
four Intel Xeon E5-2670 nodes on Moonlight supercomputer 

LA-UR-13-27797 LA-UR-14-20028 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980 

Isosurface Strong Scaling on CPUs 

3D Isosurface Generation: Scaling with the number of Intel 
Xeon E5-2670 nodes on Moonlight supercomputer 
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Isosurface Strong Scaling with Threads 

3D Isosurface Generation: Scaling with on-node CPU parallelism 
on four Intel Xeon E5-2670 nodes on Moonlight supercomputer 
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Isosurface Weak Scaling on GPUs 

3D Isosurface Generation: CUDA Compute Rates on four 
NVIDIA Tesla M2090 GPUs on Moonlight supercomputer 
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Isosurface Strong Scaling on GPUs 

3D Isosurface Generation: Scaling with the number of 
NVIDIA Tesla M2090 GPUs on Moonlight supercomputer 
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Isosurface of Ocean Temperature Data 
Generated Across Four GPUs 

Isosurface at 10oC computed across four NVIDIA Quadro 
5000 GPUs on our Darwin cluster on a 3600x2400x42 ocean temperature data set 
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KD Tree Strong Scaling with Threads 

3D KD Tree Construction: Scaling with the number of 
OpenMP threads on four AMD Opteron 6168 nodes on Darwin Cluster 
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KD Tree Strong Scaling on CPUs 

3D KD Tree Construction: Scaling with the number of 
AMD Opteron 6168 nodes on Darwin Cluste 
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Conclusions 

● Different kinds of algorithms can be implemented using this distributed data-
parallel API, with a level of parallel efficiency commensurate with the nature 
of the problem 

● Good scaling with number of nodes or GPUs and with on-node parallelism (e.g., 
OpenMP threads) achieved for isosurface, very similar to manually partitioning 
the input or to using Parallel VTK 

● KD-tree algorithm shows more complex algorithms, including those with nested 
parallelism, can also be implemented in this model, but there is still a trade-off 
between increased time to move points to correct processors in first log2(p) levels 
and computational savings at lower levels 

● On-going and Future Work 

● Distributed implementation of short materials science Ginzburg-Landau simulation 
for Exascale Co-Design Center for Materials in Extreme Environments 

● Layered backends to address other challenges in “exascale era” computing (I/O, 
fault tolerance, etc.)  
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Physics-Based Data Models and 
Architecture-Optimized Backends for a 

Portable Data-Parallel Computation Library 

Christopher Sewell, CCS-7 

Li-ta Lo, CCS-7 

Marianne Francois, CCS-2 

Jim Ahrens, CCS-7 

       

PINION Project 

LA-UR-14-20028 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980 

The Goal : Vision 2015 (1/3) 

● What we will provide 

● Data structures that allow scientists to program in a way that maps easily to the 
problem domain rather than dealing directly with 1D host/device vectors 

● Operators that provide data-parallel implementations of analysis and 
computational functions often used in physics simulations 

● Backends that optimize implementations of data parallel primitives for one or 
two emerging supercomputer hardware architectures 
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The Goal : Vision 2015 (2/3) 

 

● How we will provide it 

● Open-source release, similar to our PISTON release 

● Fully functional, well-documented application for a specific hydrodynamics 
problem   
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The Goal : Vision 2015 (3/3) 

● What domain scientists will then be able to do 

● Perform physics simulations for a wide range of applications that use a 3D grid 
(e.g. solid mechanics, astrophysics, and climate modeling) 

● Reuse our analysis and computation operators 

● Write their own operators using our high-level data model 

● Modify the example application code according to their problem definition 

● Run the same code on multiple current and next-generation supercomputing 
architectures, getting good parallel performance on each 
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