
Form 836 (7/06)

LA-UR-
Approved for public release;
distribution is unlimited.

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Title:

Author(s):

Intended for:

14-20028

PISTON

Christopher Sewell
Li-ta Lo
James Ahrens

Guest Lectures at the University of Oregon, presented
remotely, January 2014

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON

Chris Sewell
Li-ta Lo

James Ahrens
Los Alamos National Laboratory

Lectures for Hank Child’s class on many-core visualization at
the University of Oregon, January 2014

LA-UR-13-27416 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Outline

● Practical Introduction to High-Level Data Parallelism using Thrust and
PISTON

● Research Talk Overview of PISTON and PINION

● Additional Tutorial Examples

● Additional Details on Research Results

LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PRACTICAL INTRODUCTION TO HIGH-
LEVEL DATA PARALLELISM USING

THRUST AND PISTON

LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Advantages of High-Level Parallel Programming

● Supercomputer Hardware Advances Everyday
– Higher and higher parallelism

– Optimizations tailored to a certain architecture will be obsolete when you implement it

● Parallel Programming APIs Come and Go
– Nobody programs with shaders for GPGPU anymore

– Will this also happen to OpenCL, CUDA, etc. in the future?

● High-Level Parallelism
– Will not change over time

LA-UR-13-27416 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

NVIDIA’s Thrust Library

● Thrust is an open-source C++ template
library developed by NVIDIA

● It allows the user to write CUDA programs
using an STL-like interface, without having
to know CUDA-specific syntax or functions

● In addition to CUDA, it has backends for
OpenMP and Intel TBB, and can be
extended to support additional backends

● It implements many data-parallel primitives,
with user-defined functors

● It provides thrust::host_vector and
thrust::device_vector, simplifying memory
management and data transfer between
the host and device

LA-UR-12-26127

Sample Thrust code to compute vector norm

LA-UR-13-21884 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

How PISTON/PINION Leverage Thrust

● Thrust provides:

● An STL-like interface for memory management (host/device vectors) and data-parallel
algorithms

● Backend implementations of the data-parallel algorithms for CUDA, as well as slightly
less-developed implementations for OpenMP and TBB

● PISTON/PINION intend to provide:

● A library of visualization and analysis operators implemented using Thrust

● A data model for simulation meshes (e.g., VTK structured grids, unstructured grids, AMR)

● Simulation operators (e.g., advection, interface reconstruction, etc.)

● PISTON/PINION intend to enhance:

● Non-CUDA backends (e.g., OpenCL prototype, optimize OpenMP for Xeon Phi, etc.)

● Interface to support distributed memory operations

LA-UR-13-21884 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Sample Thrust Program

LA-UR-14-20028

> nvcc examples.cu -o examples
> ./examples

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Sample Thrust Program

LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Sample Thrust Program

LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Five Operations You Can Do with
a Lot of Data in Parallel

● Generate/Create

– Automatically fill with programmatically defined data

● Transform

– Apply some “operation” to each element of the data

– Also called “Map” in many contexts

● Compact

– Take only the elements in which you are interested

– Also called “Filter” in many contexts

● Expand

– The opposite of Compact

– Create a larger data set from a smaller data set

● Aggregate

– Calculate a “summary” of your data (e.g., sum or average)

– Also called “Reduce” or “Fold”

– “Scan” also provides all intermediate values

LA-UR-13-27416 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Simple Examples with Thrust Pseudocode

● Generate
thrust::sequence(0,4) 0 1 2 3 4

● Transform
input 4 5 2 1 3
thrust::transform(+1) 5 6 3 2 4

● Compact
input 4 5 2 1 3
thrust::copy_if(even) 4 2

● Expand
input 4 5 2 1 3
thrust::for_each(x,2x) 4 8 5 10 2 4 1 2 3 6

● Aggregate
input 4 5 2 1 3
thrust::reduce(+) 15

LA-UR-13-27416 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Generate Data in Parallel

● Many copies of a certain constant value
– // Ten elements with initial value of integer 1

thrust::device_vector<int> x(10, 1);

● A sequence of increasing or decreasing values
– // Allocate space for ten integers, uninitialized

thrust::device_vector<int> y(10);
// Fill the space with integers
thrust::sequence(y.begin(), y.end(), 5, 2);

● Random Values
– Multiple copies of a random number generator

– Give each one a different seed

LA-UR-13-27416 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Transform: Vector Addition

● Apply a binary operator “plus” to each element in x and y

– thrust::transform(x.begin(), x.end(), // begin and end of the
 // first input vector
y.begin(), // begin of the second
 // input vector
result.begin(), // begin of the result
 // vector
thrust::plus<int>()); // predefined integer
 // addition

– x: 1 1 1 1 1 1 1 1 1 1
 +
 y: 5 7 9 11 13 15 17 19 21 23
 =
result: 6 8 10 12 14 16 18 20 22 24

LA-UR-13-27416 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Transform: Uniform Sampling
of a Mathematical Function

● Q: How are we going to generate something more complicated?
A: Start from some sequence and apply some transformation

● Sampling the function f(x) = x2 in the interval of [0, 1]
– // Generate a sequence of xi in [0,1] with dx=0.1

// in between each of them
float dx = 1.0f/10.0f;
thrust::sequence(x.begin(), x.end(), 0.0f, dx);

// Apply the square operation to each of the xi
// to transform into f(xi) = yi = xi2
thrust::transform(x.begin(), x.end(),
 y.begin(),
 square());

LA-UR-13-27416 LA-UR-14-20028

x: 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
y: 0.0 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1.0

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Reduce: Simple Numerical Integration

● Apply what we learned to estimate the
area under a curve

● Create a constant vector of widths

● Create a vector of heights from the
function values

● Apply multiply operation on each
element of width and height

● Sum all the computed areas to get the
total area

● In calculus, this is a method of
estimating the integral ∑∫

=

∆≈
n

i
i xxfdxxf

1

1

0

)()(

LA-UR-13-27416 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Simple Numerical Integration: Example

thrust::device_vector<int> width(11, 0.1);
width = 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

thrust::sequence(x.begin(), x.end(), 0.0f, 0.1f);
x = 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

thrust::transform(x.begin(), x.end(), height.begin(), square());
height = 0.0 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1.0

thrust::transform(width.begin(), width.end(), height.begin(), area.begin(),
thrust::multiplies<float>())
area = 0.0 0.001 0.004 0.009 0.016 0.025 0.036 0.049 0.064 0.081 0.1

total_area = thrust::reduce(area.begin(), area.end());
total_area = 0.385

thrust::inclusive_scan(area.begin(), area.end(), accum_areas.begin());
accum_areas = 0.0 0.001 0.005 0.014 0.030 0.055 0.091 0.140 0.204 0.285 0.385

LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Scan: Simple Numerical Integration

● What happens if we are interested in the integral

on the interval [0, 1] instead of just a number?

● Calculate a running sum by using scan

● thrust::inclusive_scan(y_dx.begin(), y_dx.end(),
 F.begin());

● f(xi)*dx = 0.0 0.001 0.004 0.009 0.016 0.025 0.036 0.049 0.064 0.081 0.1
F(t) = 0.0 0.001 0.005 0.014 0.030 0.055 0.091 0.140 0.204 0.285 0.385

● The last element of the scan (0.385) is the same as the output of reduce

● In mathematical terms,

∫+=
t

dtxfFtF
0

)()0()(

)0()1()(
1

0

FFdxxf −=∫

LA-UR-13-27416 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Scan: Calculating the Fibonacci Sequence
by Matrix Multiplication

● The reduce and scan operators can also work with a user defined type

● The Fibonacci Sequence is defined as
 with

● By “unrolling” the recurrence we have

● Thus we can compute Fn by matrix multiplication

11 −+ += nnn FFF 1,0 10 == FF

=

−

+

1

1

01
11

n

n

n

n

F
F

F
F

35
58

23
35

12
23

11
12

01
11

01
11

01
11

01
11

01
11

01
11

LA-UR-13-27416 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Fibonacci Sequence using a Matrix Scan

LA-UR-14-20028

5 6 2 1 2 5 4 1 3 8 2 7 9 2 4 3

5 11 13 14 2 7 11 12 3 11 13 20 9 11 15 18

 0 14 12 20

 0 14 26 46

0 14 26 46

5 11 13 14 16 21 25 26 29 37 39 46 55 57 61 64

thrust::inclusive_scan

thrust::inclusive_scan

MPI_Gather

MPI_Scatter

thrust::transform

 P0 P1 P2 P3
Alternative: M

PI_Exscan

Distributed Scan Algorithm

LA-UR-14-20028

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 5 4 9 6 13 8 17 10 21 12 25 14 29

0 1 2 6 4 9 6 22 8 17 10 38 12 25 14 54

0 1 2 6 4 9 6 28 8 17 10 38 12 25 14 92

0 1 2 6 4 9 6 28 8 17 10 38 12 25 14 120

0 1 2 6 4 9 6 28 8 17 10 38 12 25 14 0

0 1 2 6 4 9 6 0 8 17 10 38 12 25 14 28

0 1 2 0 4 9 6 6 8 17 10 28 12 25 14 66

0 0 2 1 4 6 6 15 8 28 10 45 12 66 14 91

0 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105

Up-sweep (reduce)

for d = 0 to log2n-1 do
 for k from 0 to n-1 by 2d+1 pardo
 x[k+2d+1-1] = x[k+2d-1] + x[k+2d+1-1]

x[n-1] = 0

Down-sweep

for d = log2n-1 down to 0 do
 for k from 0 to n-1 by 2d+1 pardo
 t = x[k+2d-1]
 x[k+2d-1] = x[k+2d+1-1]
 x[k+2d+1-1] = t + x[k+2d+1-1]

Tree Scan Algorithm

LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Compaction: Finding Prime Numbers
Using the Sieve of Eratosthenes

● Start with a vector containing the sequence of integers from 2 to N

● The first element in this vector is prime

● Use compaction to copy only elements of the vector not divisible by
this prime into an updated vector (Thrust copy_if operator)

● The second element in this vector is prime

● Repeat the two steps above until you reach the end of the vector

● 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 3 5 7 9 11 13 15
2 3 5 7 11 13
2 3 5 7 11 13
2 3 5 7 11 13
2 3 5 7 11 13

LA-UR-13-27416 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Boid Simulation

● Simulate flocking behavior of a group of “boids”

● At each time step, velocities are adjusted based on three parameters, each dependent only upon
observing other nearby boids:

● Cohesion: Each boid wants to move towards the centroid of other boids in its vicinity, to join the flock

● Separation: Each boid wants to move away from other boids that are too close to it, to avoid collisions

● Alignment: Each boid wants to adjust its velocity (direction and magnitude) to match that of other
boids in its vicinity, to move in sync with the flock

● Positions are then updated for the next time step based on the new velocities

● Thrust transform functions are used in order to parallelize the computations for all the boids

● Functors are used to compute the cohesion, separation, and alignment parameters for a boid,
and to update its velocity and position

● Reference: http://syntacticsalt.com/2011/03/10/functional-flocks/ by Matt Sottile

LA-UR-13-27416 LA-UR-14-20028

http://syntacticsalt.com/2011/03/10/functional-flocks/

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Boid Simulation Video

LA-UR-13-27416 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Outline of Flock Simulation Class

LA-UR-13-27416 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Main simulation loop

LA-UR-13-27416 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Cohesion Term

LA-UR-13-27416 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Separation Term

LA-UR-13-27416 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Alignment Term

LA-UR-13-27416 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Updating Velocities

()awswcwwvv ascvtt +++=+1

LA-UR-13-27416 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Updating Positions

tvxx ttt ∆+=+1

LA-UR-13-27416 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Bouncing off boundaries

LA-UR-13-27416 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Interop

● Without interop, separate memory is used on the GPU for computation
results and for rendering, and data transfer goes through the CPU

● With interop, a shared region of memory on the GPU is used both for
computation and for rendering, eliminating the slow GPU-CPU data transfers

GPU

Computation
Results

Vertices for
Rendering

CPU

Data

GPU

Shared
Vertex Buffer

Without interop With interop

LA-UR-13-27416 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Conclusion

● The example codes we showed are independent of the location of
data and execution

● It can be executed serially on CPU or parallel backends

● Debug on CPU during development; use parallel execution in
“production”

● Extend to other languages and libraries
– STL in C++

– Copperhead in Python

– SQL/LINQ for databases

LA-UR-13-27416 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

High-Level Data-Parallelism Future-Proofs Your Code

● The high-level parallel algorithms you write today will still work with
new hardware in the future

● In fact, they will only get faster!

● The skills you learn in developing high-level parallel algorithms will
still be applicable in the future even as computing technology
improves

LA-UR-13-27416 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Obtaining Thrust and Data-Parallel Examples

● Obtain Thrust:

● Part of CUDA: https://developer.nvidia.com/cuda-downloads

● Or, just get Thrust: http://thrust.github.com

● Obtain the examples from this presentation from github:
https://github.com/losalamos/PISTON/tree/master/tutorial/NMSCC13

● If you have questions, contact Chris (csewell@lanl.gov)

LA-UR-13-27416 LA-UR-14-20028

https://developer.nvidia.com/cuda-downloads
http://thrust.github.com/
https://github.com/losalamos/PISTON/tree/master/tutorial/NMSCC13

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Instructions for Example Code

● This project uses CMake (available at http://www.cmake.org/cmake/resources/software.html).
Create a build directory, and run ccmake “path-to-source-directory".

● Run with or without CUDA

● To run the CUDA backend, you need an NVIDIA GPU (that is CUDA-capable) and an installation
of NVIDIA's CUDA toolkit (available at https://developer.nvidia.com/cuda-downloads), and the
location of this installation should be provided in the CMake configuration.

● Alternatively, you can run just the OpenMP backend by downloading Thrust 1.7 rather than
CUDA (available at thrust.github.com). In the CMake configuration, set USE_CUDA to OFF, and
provide the location of Thrust in the CMake configuration for the THRUST_DIR CMake variable.
If using a Mac, and your default compiler uses Clang, you need to use set the old gcc
(/usr/bin/g++) instead of letting CMake to figure which compiler to use.

● Once you have set all of the CMake variables, select the configure and then generate options.
You can then quit CMake and run make to build the examples.

LA-UR-13-27416 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

RESEARCH TALK OVERVIEW OF PISTON
AND PINION

LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

SDAV VTK-m Frameworks

● Objective: Enhance existing multi/many-core technologies in anticipation of in
situ analysis use cases with LCF codes

● Benefit to scientists: These frameworks will make it easier for domain
scientists’ simulation codes to take advantage of the parallelism available on
a wide range of current and next-generation hardware architectures,
especially with regards to visualization and analysis tasks

● Projects

● EAVL, Oak Ridge National Laboratory

● DAX, Sandia National Laboratory

● DIY, Argonne National Laboratory

● PISTON, Los Alamos National Laboratory

● Work on integrating these projects with VTK is on-going, in collaboration with
Kitware

LA-UR-13-23729 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON: A Portable Data-Parallel Visualization and Analysis
Framework

 Goal: Portability and performance for visualization and analysis operators on current and
next-generation supercomputers

 Main idea: Write operators using only data-parallel primitives (scan, reduce, etc.)

 Requires architecture-specific optimizations for only for the small set of primitives

 PISTON is built on top of NVIDIA’s Thrust Library

LA-UR-13-23729 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Motivation and Background

● Current production visualization software does not take full advantage of acceleration
hardware and/or multi-core architecture

● Research on accelerating visualization operations are mostly hardware-specific; few were
integrated in visualization software

● Standards such as OpenCL may allow program to run cross-platform, but usually still requires
many architecture specific optimizations to run well

● Data parallelism: independent processors performs the same task on different pieces of data
(see Blelloch, “Vector Models for Data Parallel Computing”)

● Due to the massive data sizes we expect to be simulating we expect data parallelism to be a
good way to exploit parallelism on current and next generation architectures

● Thrust is a NVidia C++ template library for CUDA. It can also target other backends such as
OpenMP, and allows you to program using an interface similar the C++ Standard Template
Library (STL)

LA-UR-13-23729 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Videos of PISTON in Action

LA-UR-13-23729 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Brief Introduction to Data-Parallel Programming
and Thrust

● Sorts

● Transforms

● Reductions

● Scans

● Binary searches

● Stream compactions

● Scatters / gathers

Challenge: Write operators in terms of
these primitives only

Reward: Efficient, portable code

What algorithms does Thrust provide?

LA-UR-13-23729 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Isosurface with Marching Cube – the Naive Way

● Classify all cells by transform

● Use copy_if to compact valid cells.

● For each valid cell, generate same
number of geometries with flags.

● Use copy_if to do stream compaction
on vertices.

● This approach is too slow, more than
50% of time was spent moving huge
amount of data in global memory.

● Can we avoid calling copy_if and
eliminate global memory movement?

LA-UR-13-23729 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Isosurface with Marching Cube – Optimization

● Inspired by HistoPyramid

● The filter is essentially a mapping
from input cell id to output vertex id

● Is there a “reverse” mapping?

● If there is a reverse mapping, the
filter can be very “lazy”

● Given an output vertex id, we only
apply operations on the cell that
would generate the vertex

● Actually for a range of output vertex
ids

0 1 2 5 4 3 6

0

1
2 3 4

5
6

7

8
9

LA-UR-13-23729 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Isosurface with Marching Cubes Algorithm

LA-UR-13-23729 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Variations on Isosurface: Cut Surfaces and Threshold

● Cut surface

● Two scalar fields, one for generating
geometry (cut surface) the other for scalar
interpolation

● Less than 10 LOC change, negligible
performance impact to isosurface

● One 1D interpolation per triangle vertex

● Threshold

● Classify cells, this time based on whether
value at each vertex falls within threshold
range, then stream compact valid cells and
generate geometry for valid cells

● Additional pass of cell classification and
stream compaction to remove interior cells

LA-UR-13-23729 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Additional Operators

Our implementations

● Glyphs

● KD-Tree Construction

● Halo finder for cosmology
simulations

● “Boid” simulation
(flocking birds)

Data Structures
 Graphs: Neighbor reducing, distributing excess across edges
 Trees: Leaffix and rootfix operations, tree manipulations
 Multidimensional arrays
Computational Geometry
 Generalized binary search
 k-D tree
 Closest pair
 Quickhull
 Merge Hull

Graph Algorithms
 Minimum spanning tree
 Maximum flow
 Maximal independent set
Numerical Algorithms
 Matrix-vector multiplication
 Linear-systems solver
 Simplex
 Outer product
 Sparse-matrix multiplication

Blelloch’s “Vector Models for Data-Parallel Computing”

LA-UR-13-23729 LA-UR-14-20028

http://www.cs.cmu.edu/~blelloch/papers/Ble90.pdf

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON Performance

LA-UR-13-23729 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Integration with VTK and ParaView

● Filters that use PISTON data types and algorithms integrated into VTK and ParaView

● Utility filters interconvert between standard VTK data format and PISTON data format
(thrust device vectors)

● Supports interop for on-card rendering

LA-UR-13-23729 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Extending PISTON’s Portability: Architectures (1/3)

● Prototype OpenCL backend

● Successfully implemented isosurface and cut plane operators in OpenCL with code
almost identical to that used for the Thrust-based CUDA and OpenMP backends

● With interop on AMD FirePro V7800, we can run at about 6 fps for 256^3 data set
(2 fps without interop)

● Renderer

● Allows generation of images on systems without OpenGL

● Rasterizing and ray-casting versions (using KD-Tree)

LA-UR-13-23729 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Extending PISTON’s Portability: Architectures (2/3)

● Inter-node (distributed memory) parallelism

● VTK Integration handles domain
decomposition / image compositing

● Distributed implementations of Thrust
primitives using MPI

– User can treat data as single vectors even
though values are distributed across nodes

– Regular Thrust primitives are called for on-
node work, so it takes advantage of
parallelism both on nodes and across
nodes

– Implemented isosurface and KD-tree
construction algorithms using distributed
PISTON

Distributed Scan Algorithm

Isosurface of 3600x2400x42 ocean temperature data computed on 4 GPUs

LA-UR-13-23729 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980 LA-UR-13-23729

Extending PISTON’s Portability: Architectures (3/3)

LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Extending PISTON’s Portability: Data Types

● Curvilinear coordinates

● Multiple layers of coordinate transformations

● Due to kernel fusion, very little performance
impact

● Unstructured / AMR data

● Tetrahedralize uniform grid or unstructured grid
(e.g., AMR mesh)

● Generate isosurface geometry based on look-up
table for tetrahedral cells

● Next step: Develop PISTON operator to
tetrahedralize grids, and/or to compute
isosurface directly on AMR grid

LA-UR-13-23729 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON In-Situ

● VPIC (Vector Particle in Cell) Kinetic Plasma Simulation Code

● Implemented an in-situ adapter based on Paraview
CoProcessing Library (Catalyst)

● PISTON contour pipeline using ParaView’s PISTON integration

● CoGL

● Stand-alone meso-scale simulation code developed as part of
the Exascale Co-Design Center for Materials in Extreme
Environments

● Studies pattern formation in ferroelastic materials using the
Ginzburg–Landau approach

● Models cubic-to-tetragonal transitions under dynamic strain
loading

● Simulation code and in-situ viz implemented using PISTON

Output of PISTON contour filter on Hhydro charge
density at one timestep of VPIC simulation

PISTON in-situ visualization of CoGLGinzburg-Landau
simulation

LA-UR-13-23729 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON’s Companion Project: PINION

● A portable, data-parallel software framework for physics simulations

● Data structures that allow scientists to program in a way that maps easily to the problem domain rather
than dealing directly with 1D host/device vectors

● Operators that provide data-parallel implementations of analysis and computational functions often used
in physics simulations

● Backends that optimize implementations of data parallel primitives for one or two emerging
supercomputer hardware architectures

LA-UR-13-23729 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

ADDITIONAL TUTORIAL EXAMPLES

LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Tutorials

● Be a Thrust user

● Thrust QuickStartGuide examples

● Be a PISTON user

● tutorial1{OMP/GPU}: create a tangle field and apply the PISTON isosurface operator

● demo{OMP/GPU}: load a VTK structured grid from a file and apply the PISTON
isosurface, cut plane, or threshold operator

● Be a PISTON developer

● tutorial2{OMP/GPU}: write a simple simulation (boid flocking) and a simple visualization
operator (glyphs) using Thrust primitives, and chain them together (optionally using
interop with CUDA)

● Be a data-parallel algorithm designer using PISTON

● tutorial3{OMP/GPU}: use data parallel primitives to design a KD-tree algorithm

LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Tutorial 1: Use PISTON isosurface operator (1/2)

LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Tutorial 1: Use PISTON isosurface operator (2/2)

LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Tutorial 2: Boid Simulation

● Already covered in first section

LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Tutorial 3: KD-Tree

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

2

3

7

6

5

4

1

LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

KD Tree: Overview

 Point Ids X Ranks Y Ranks

computeGlobalRanks 0 1 2 3 4 5 6 7 1 6 0 2 7 3 4 5 0 5 2 3 7 6 4 1

computeFlags F T F F T F T T F T F F T F T T F T F F T F T T

segmentedSplit 0 2 3 5 1 4 6 7 1 0 2 3 6 7 4 5 0 2 3 6 5 7 4 1

0 0 0 0 1 1 1 1 F F F F T T T T F F F F T T T T F F F F T T T T

renumberRanks 1 0 2 3 2 3 0 1 0 1 2 3 2 3 1 0

computeFlags F F T T T T F F F F T T T T F F F F T T T T F F

segmentedSplit 0 2 3 5 6 7 1 4 1 0 2 3 0 1 2 3 0 1 2 3 1 0 2 3

0 0 1 1 2 2 3 3 F F T T F F T T F F T T F F T T F F T T F F T T

renumberRanks 1 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1

Le
ve

l 1

Le
ve

l 2

LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

KD Tree: computeGlobalRanks

A Input coordinates 2.9 8.9 2.4 6.4 9.3 6.9 7.5 7.6

B CountingIterator(0) 0 1 2 3 4 5 6 7

C sort_by_key(A,B) 2.4 2.9 6.4 6.9 7.5 7.6 8.9 9.3

 2 0 3 5 6 7 1 4

D scatter(B,C) 1 6 0 2 7 3 4 5

LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

KD Tree: computeFlags

A Input ranks 1 6 0 2 7 3 4 5

B Input segmentIds 0 0 0 0 0 0 0 0

C CountingIterator(1) 1 2 3 4 5 6 7 8

D Reverse inclusive_scan_by_key(B,C,max) 8 8 8 8 8 8 8 8
// # elements in segment

E transform(E[i]=D[i]/2) 4 4 4 4 4 4 4 4
// # median index

F transform(F[i]=A[i]>=E[i]) F T F F T F T T

LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

KD Tree: segmentedSplit

A Input pointIds 0 2 3 5 1 4 6 7

B Input flags F F T T T T F F

C Input segmentIds 0 0 0 0 1 1 1 1

D exclusive_scan_by_key(C,B) 0 0 0 1 0 1 2 2
// total number of true flags preceding in segment

E CountingIterator(0) 0 1 2 3 4 5 6 7

F inclusive_scan_by_key(C,E,min) 0 0 0 0 4 4 4 4
// total number of elements in previous segments

G CountingIterator(1) 1 2 3 4 5 6 7 8

H Reverse inclusive_scan_by_key(C,G,max) 4 4 4 4 8 8 8 8
// index of last element in its segment (+1)

I inclusive_scan_by_key(C,inverse(B)) 1 2 2 2 0 0 1 2
// total number of false flags so far in segment

J transform(J[i]=(if(B[i]) F[i]+I[H[i]-1]+D[i] else F[i]+I[i]-1)) 0 1 2 3 6 7 4 5

K scatter(A,J) 0 2 3 5 6 7 1 4

LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

KD Tree: renumberRanks

A Input ranks 0 2 3 6 5 7 4 1

B Input flags F F F F T T T T

C Input segmentIds 0 0 0 0 1 1 1 1

D ConstantIterator(1) 1 1 1 1 1 1 1 1

E exclusive_scan_by_key(C,D) 0 1 2 3 0 1 2 3

F scatter(E,A) 0 3 1 2 2 0 3 1

G scatter(B,A) F T F F T T F T

H segmentedSplit(F,G) 0 1 2 3 3 2 0 1

I CountingIterator(0) 0 1 2 3 4 5 6 7

J inclusive_scan_by_key(C,I,min) 0 0 0 0 4 4 4 4
// total number of elements in previous segments

K transform(H+J) 0 1 2 3 7 6 4 5

L scatter(E,K) 0 1 2 3 2 3 1 0

LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

KD Tree: renumberRanks (further segmented)

A Input ranks 0 1 2 3 1 0 2 3

B Input flags F F T T F F T T

C Input segmentIds 0 0 1 1 2 2 3 3

D Input pre-split segmentIds 0 0 0 0 1 1 1 1

E CountingIterator(0) 0 1 2 3 4 5 6 7

F inclusive_scan_by_key(D,E,min) 0 0 0 0 4 4 4 4

G transform(A+F) 0 1 2 3 5 4 6 7

H ConstantIterator(1) 1 1 1 1 1 1 1 1

I exclusive_scan_by_key(C,H) 0 1 0 1 0 1 0 1

J scatter(I,G) 0 1 0 1 1 0 0 1

K scatter(B,G) F F T T F F T T

L segmentedSplit(J,K,C) 0 1 0 1 1 0 0 1

M inclusive_scan_by_key(C,E,min) 0 0 2 2 4 4 6 6

N transform(L+M) 0 1 2 3 5 4 6 7

O scatter(I,N) 0 1 0 1 1 0 0 1

LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

ADDITIONAL DETAILS ON RESEARCH
RESULTS

LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Distributed Data Parallelism

● Goal: Allow developer to write data-parallel algorithms in the same way whether vectors
are actually stored on one node or multiple distributed nodes

● Related work

● Guy Blelloch: data parallel algorithms, including nested data parallelism using
segment descriptors

● Bergstrom and Reppy: port Blelloch’s NESL language to GPUs

● Strengert, Muller, Dachsbacher, Ertl, Frey: CUDASA extends CUDA to run across
multiple GPUs, presenting distributed shared memory to developer as global arrays

● OpenMPI and OpenRTE: improve MPI to run well across large heterogeneous systems

● Libraries for writing parallel code: Thrust, STAPL, Dax, EAVL, DIY

● Our contribution: Portable performance on-node and across nodes with same easy-to-
use STL-like API, supporting many algorithms including use of nested parallelism

LA-UR-13-27797 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Distributed Data-Parallel Primitives

● Created a distributed wrapper for Thrust which handles the
communication in the backend using MPI while still calling the standard
Thrust library to take advantage of available on-node parallelism

● For example, call dthrust::scan(input.begin(), input.end(), output.begin())
instead of thrust::scan(input.begin(),
input.end(), output.begin())

● Operators implemented

● Data Transfer Functions (host to device and device to host)

● Rebalance and Shift

● Transform, Scan, Segmented Scan, Scatter, Gather, Reduce

● Upper bound (binary search), sort, sort by key

LA-UR-13-27797 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Distributed Scan

LA-UR-13-27797 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Code for Distributed Scan Backend

LA-UR-13-27797 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Algorithms Built Using the Distributed Primitives

● Isosurface

● Same algorithm as in our EGPGV paper, generating a “reverse map” from output
vertex index to input cell index, allowing it to “lazily” apply operations only to cells
that will generate the output vertices

● Generates “triangle soup”, but generated vertices could potentially be welded into
a triangle strip using data-parallel algorithm in Thrust weld_vertices example

● Communication overhead is low, but load may not be balanced

● KD-tree construction

● Generally based on algorithm from Blelloch’s dissertation, but tailored to Thrust API

● Uses nested data parallelism, creating sub-trees top-down

● Points may have to be moved to a different processor in first log2(p) levels

LA-UR-13-27797 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Code for Distributed Isosurface Algorithm

LA-UR-13-27797 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

KD Tree: Overview

LA-UR-13-27797 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

KD Tree: Segmented Split

LA-UR-13-27797 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

KD Tree: Renumber Ranks

LA-UR-13-27797 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Isosurface Weak Scaling on CPUs

3D Isosurface Generation: OpenMP Compute Rates on
four Intel Xeon E5-2670 nodes on Moonlight supercomputer

LA-UR-13-27797 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Isosurface Strong Scaling on CPUs

3D Isosurface Generation: Scaling with the number of Intel
Xeon E5-2670 nodes on Moonlight supercomputer

LA-UR-13-27797 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Isosurface Strong Scaling with Threads

3D Isosurface Generation: Scaling with on-node CPU parallelism
on four Intel Xeon E5-2670 nodes on Moonlight supercomputer

LA-UR-13-27797 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Isosurface Weak Scaling on GPUs

3D Isosurface Generation: CUDA Compute Rates on four
NVIDIA Tesla M2090 GPUs on Moonlight supercomputer

LA-UR-13-27797 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Isosurface Strong Scaling on GPUs

3D Isosurface Generation: Scaling with the number of
NVIDIA Tesla M2090 GPUs on Moonlight supercomputer

LA-UR-13-27797 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Isosurface of Ocean Temperature Data
Generated Across Four GPUs

Isosurface at 10oC computed across four NVIDIA Quadro
5000 GPUs on our Darwin cluster on a 3600x2400x42 ocean temperature data set

LA-UR-13-27797 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

KD Tree Strong Scaling with Threads

3D KD Tree Construction: Scaling with the number of
OpenMP threads on four AMD Opteron 6168 nodes on Darwin Cluster

LA-UR-13-27797 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

KD Tree Strong Scaling on CPUs

3D KD Tree Construction: Scaling with the number of
AMD Opteron 6168 nodes on Darwin Cluste

LA-UR-13-27797 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Conclusions

● Different kinds of algorithms can be implemented using this distributed data-
parallel API, with a level of parallel efficiency commensurate with the nature
of the problem

● Good scaling with number of nodes or GPUs and with on-node parallelism (e.g.,
OpenMP threads) achieved for isosurface, very similar to manually partitioning
the input or to using Parallel VTK

● KD-tree algorithm shows more complex algorithms, including those with nested
parallelism, can also be implemented in this model, but there is still a trade-off
between increased time to move points to correct processors in first log2(p) levels
and computational savings at lower levels

● On-going and Future Work

● Distributed implementation of short materials science Ginzburg-Landau simulation
for Exascale Co-Design Center for Materials in Extreme Environments

● Layered backends to address other challenges in “exascale era” computing (I/O,
fault tolerance, etc.)

LA-UR-13-27797 LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Physics-Based Data Models and
Architecture-Optimized Backends for a

Portable Data-Parallel Computation Library

Christopher Sewell, CCS-7

Li-ta Lo, CCS-7

Marianne Francois, CCS-2

Jim Ahrens, CCS-7

PINION Project

LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

The Goal : Vision 2015 (1/3)

● What we will provide

● Data structures that allow scientists to program in a way that maps easily to the
problem domain rather than dealing directly with 1D host/device vectors

● Operators that provide data-parallel implementations of analysis and
computational functions often used in physics simulations

● Backends that optimize implementations of data parallel primitives for one or
two emerging supercomputer hardware architectures

LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

The Goal : Vision 2015 (2/3)

● How we will provide it

● Open-source release, similar to our PISTON release

● Fully functional, well-documented application for a specific hydrodynamics
problem

LA-UR-14-20028

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

The Goal : Vision 2015 (3/3)

● What domain scientists will then be able to do

● Perform physics simulations for a wide range of applications that use a 3D grid
(e.g. solid mechanics, astrophysics, and climate modeling)

● Reuse our analysis and computation operators

● Write their own operators using our high-level data model

● Modify the example application code according to their problem definition

● Run the same code on multiple current and next-generation supercomputing
architectures, getting good parallel performance on each

LA-UR-14-20028

	LAURCoverOregon
	PISTONLecturesOregon
	PISTON
	Outline
	Practical Introduction TO HIGH-LEVEL Data Parallelism using thrust and PISton
	Advantages of High-Level Parallel Programming
	NVIDIA’s Thrust Library
	How PISTON/PINION Leverage Thrust
	Sample Thrust Program
	Sample Thrust Program
	Sample Thrust Program
	Five Operations You Can Do with �a Lot of Data in Parallel
	Simple Examples with Thrust Pseudocode
	Generate Data in Parallel
	Transform: Vector Addition
	Transform: Uniform Sampling �of a Mathematical Function
	Reduce: Simple Numerical Integration
	Simple Numerical Integration: Example
	Scan: Simple Numerical Integration
	Scan: Calculating the Fibonacci Sequence �by Matrix Multiplication
	Fibonacci Sequence using a Matrix Scan
	Slide Number 20
	Slide Number 21
	Compaction: Finding Prime Numbers �Using the Sieve of Eratosthenes
	Boid Simulation
	Boid Simulation Video
	Outline of Flock Simulation Class
	Main simulation loop
	Cohesion Term
	Separation Term
	Alignment Term
	Updating Velocities
	Updating Positions
	Bouncing off boundaries
	Interop
	Conclusion
	High-Level Data-Parallelism Future-Proofs Your Code
	Obtaining Thrust and Data-Parallel Examples
	Instructions for Example Code
	Research Talk overview of piston and pinion
	SDAV VTK-m Frameworks
	PISTON: A Portable Data-Parallel Visualization and Analysis Framework
	Motivation and Background
	Videos of PISTON in Action
	Brief Introduction to Data-Parallel Programming and Thrust
	Isosurface with Marching Cube – the Naive Way
	Isosurface with Marching Cube – Optimization
	Isosurface with Marching Cubes Algorithm
	Variations on Isosurface: Cut Surfaces and Threshold
	Additional Operators
	PISTON Performance
	Integration with VTK and ParaView
	Extending PISTON’s Portability: Architectures (1/3)
	Extending PISTON’s Portability: Architectures (2/3)
	Slide Number 53
	Extending PISTON’s Portability: Data Types
	PISTON In-Situ
	PISTON’s Companion Project: PINION
	Additional tutorial examples
	Tutorials
	Tutorial 1: Use PISTON isosurface operator (1/2)
	Tutorial 1: Use PISTON isosurface operator (2/2)
	Tutorial 2: Boid Simulation
	Tutorial 3: KD-Tree
	KD Tree: Overview
	KD Tree: computeGlobalRanks
	KD Tree: computeFlags
	KD Tree: segmentedSplit
	KD Tree: renumberRanks
	KD Tree: renumberRanks (further segmented)
	Additional details on research results
	Distributed Data Parallelism
	Distributed Data-Parallel Primitives
	Distributed Scan
	Code for Distributed Scan Backend
	Algorithms Built Using the Distributed Primitives
	Code for Distributed Isosurface Algorithm
	KD Tree: Overview
	KD Tree: Segmented Split
	KD Tree: Renumber Ranks
	Isosurface Weak Scaling on CPUs
	Isosurface Strong Scaling on CPUs
	Isosurface Strong Scaling with Threads
	Isosurface Weak Scaling on GPUs
	Isosurface Strong Scaling on GPUs
	Slide Number 84
	KD Tree Strong Scaling with Threads
	KD Tree Strong Scaling on CPUs
	Conclusions
	Physics-Based Data Models and Architecture-Optimized Backends for a Portable Data-Parallel Computation Library
	The Goal : Vision 2015 (1/3)
	The Goal : Vision 2015 (2/3)
	The Goal : Vision 2015 (3/3)

