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Advantages of High-Level Parallel Programming 

● Supercomputer Hardware Advances Everyday 
– More and more parallelism 

– Optimizations tailored to a certain architecture will be obsolete when you implement it 

● Parallel Programming APIs Come and Go 
– Nobody programs with shaders for GPGPU anymore 

– Will this also happen to OpenCL, CUDA, etc. in the future? 

● High-Level Parallelism 
– Will not change over time  

LA-UR-13-27416 LA-UR-14-26186 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980 

Blelloch’s “Vector Models for Data-Parallel Computing” 

Data Structures 
    Graphs: Neighbor reducing, distributing excess across edges 
    Trees: Leaffix and rootfix operations, tree manipulations 
    Multidimensional arrays 
Computational Geometry 
    Generalized binary search 
    k-D tree 
    Closest pair 
    Quickhull 
    Merge Hull 

Graph Algorithms 
    Minimum spanning tree 
    Maximum flow 
    Maximal independent set 
Numerical Algorithms 
    Matrix-vector multiplication 
    Linear-systems solver 
    Simplex 
    Outer product 
    Sparse-matrix multiplication 

http://www.cs.cmu.edu/~blelloch/papers/Ble90.pdf 
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NVIDIA’s Thrust Library 

● Thrust is an open-source C++ template 
library developed by NVIDIA 

● It allows the user to write CUDA programs 
using an STL-like interface, without having 
to know CUDA-specific syntax or functions 

● In addition to CUDA, it has backends for 
OpenMP and Intel TBB, and can be 
extended to support additional backends 

● It implements many data-parallel primitives, 
with user-defined functors  

● It provides thrust::host_vector and 
thrust::device_vector, simplifying memory 
management and data transfer between 
the host and device 

 
LA-UR-12-26127 

Sample Thrust code to compute vector norm 
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How PISTON/PINION Leverage Thrust 

● Thrust provides: 

● An STL-like interface for memory management (host/device vectors) and data-parallel 
algorithms 

● Backend implementations of the data-parallel algorithms for CUDA, as well as slightly 
less-developed implementations for OpenMP and TBB 

● PISTON/PINION intend to provide: 

● A library of visualization and analysis operators implemented using Thrust 

● A data model for simulation meshes (e.g., VTK structured grids, unstructured grids, AMR) 

● Simulation operators (e.g., advection, interface reconstruction, etc.) 

● PISTON/PINION intend to enhance: 

● Non-CUDA backends (e.g., OpenCL prototype, optimize OpenMP for Xeon Phi, etc.) 

● Interface to support distributed memory operations 

LA-UR-13-21884 LA-UR-14-26186 
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Simple Examples with Thrust Pseudocode 

● Generate 
thrust::sequence(0,4)  0  1  2  3  4 

● Transform 
input                  4  5  2  1  3 
thrust::transform(+1)  5  6  3  2  4 

● Compact 
input                  4  5  2  1  3 
thrust::copy_if(even)  4  2 

● Expand 
input                  4  5  2  1  3 
thrust::for_each(x,2x) 4  8  5 10  2  4  1  2  3  6 

● Aggregate 
input                  4  5  2  1  3 
thrust::reduce(+)      15 
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Generate Data in Parallel 

● Many copies of a certain constant value 
– // Ten elements with initial value of integer 1 

thrust::device_vector<int> x(10, 1); 

● A sequence of increasing or decreasing values 
– // Allocate space for ten integers, uninitialized 

thrust::device_vector<int> y(10); 
// Fill the space with integers 
thrust::sequence(y.begin(), y.end(), 5, 2); 

● Random Values 
– Multiple copies of a random number generator 

– Give each one a different seed 

LA-UR-13-27416 LA-UR-14-26186 
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Transform: Uniform Sampling  
of a Mathematical Function 

● Q: How are we going to generate something more complicated? 
A: Start from some sequence and apply some transformation 

● Sampling the function f(x) = x2 in the interval of [0, 1] 
– // Generate a sequence of xi in [0,1] with dx=0.1 

// in between each of them 
float dx = 1.0f/10.0f; 
thrust::sequence(x.begin(), x.end(), 0.0f, dx); 
 
// Apply the square operation to each of the xi  
// to transform into f(xi) = yi = xi2 
thrust::transform(x.begin(), x.end(), 
                  y.begin(), 
                  square()); 

LA-UR-13-27416 

x: 0.0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1.0 
y: 0.0  0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1.0 

LA-UR-14-26186 
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Reduce: Simple Numerical Integration 

● Apply what we learned to estimate the 
area under a curve  

● Create a constant vector of widths 

● Create a vector of heights from the 
function values 

● Apply multiply operation on each 
element of width and height 

● Sum all the computed areas to get the 
total area 

● In calculus, this is a method of 
estimating the integral  ∑∫
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Simple Numerical Integration: Example 

    
thrust::device_vector<int> width(11, 0.1);  
width       =  0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1 
 
thrust::sequence(x.begin(), x.end(), 0.0f, 0.1f); 
x           =  0.0   0.1   0.2   0.3   0.4   0.5   0.6   0.7   0.8   0.9   1.0 
 
thrust::transform(x.begin(), x.end(), height.begin(), square());  
height      =  0.0  0.01  0.04  0.09  0.16  0.25  0.36  0.49  0.64  0.81   1.0 
 
thrust::transform(width.begin(), width.end(), height.begin(), area.begin(), 
thrust::multiplies<float>()) 
area        =  0.0 0.001 0.004 0.009 0.016 0.025 0.036 0.049 0.064 0.081   0.1 
 
total_area = thrust::reduce(area.begin(), area.end()); 
total_area =  0.385 
 
 
 
thrust::inclusive_scan(area.begin(), area.end(), accum_areas.begin()); 
accum_areas =  0.0 0.001 0.005 0.014 0.030 0.055 0.091 0.140 0.204 0.285 0.385 
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Scan: Calculating the Fibonacci Sequence  
by Matrix Multiplication 

● The reduce and scan operators can also work with a user defined type 

● The Fibonacci Sequence is defined as 
                                             with  

● By “unrolling” the recurrence we have 

 

 

● Thus we can compute Fn by matrix multiplication 
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Compaction: Finding Prime Numbers  
Using the Sieve of Eratosthenes 

● Start with a vector containing the sequence of integers from 2 to N 

● The first element in this vector is prime 

● Use compaction to copy only elements of the vector not divisible by 
this prime into an updated vector (Thrust copy_if operator) 

● The second element in this vector is prime 

● Repeat the two steps above until you reach the end of the vector 

● 2  3  4  5  6  7  8  9 10 11 12 13 14 15 
2  3  5  7  9 11 13 15 
2  3  5  7 11 13 
2  3  5  7 11 13 
2  3  5  7 11 13 
2  3  5  7 11 13 

LA-UR-13-27416 LA-UR-14-26186 
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SDAV VTK-m Frameworks 

● Objective: Enhance existing multi/many-core technologies in 
anticipation of in situ analysis use cases with LCF codes 

● Benefit to scientists: These frameworks will make it easier for domain 
scientists’ simulation codes to take advantage of the parallelism 
available on a wide range of current and next-generation hardware 
architectures, especially with regards to visualization and analysis tasks  

● Projects 

● EAVL, Oak Ridge National Laboratory 

● Dax, Sandia National Laboratory 

● PISTON, Los Alamos National Laboratory 

● Work on integrating these projects with VTK is on-going, in 
collaboration with Kitware   

 LA-UR-13-23729 LA-UR-14-26186 
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PISTON: A Portable Data-Parallel Visualization and Analysis 
Framework 

 Goal: Portability and performance for visualization and analysis operators on current and 
next-generation supercomputers 

 Main idea: Write operators using only data-parallel primitives (scan, reduce, etc.) 

 Requires architecture-specific optimizations for only for the small set of primitives 

 PISTON is built on top of NVIDIA’s Thrust Library 

LA-UR-13-23729 LA-UR-14-26186 
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Motivation and Background 

● Current production visualization software does not take full advantage of acceleration 
hardware and/or multi-core architecture 

● Research on accelerating visualization operations are mostly hardware-specific; few were 
integrated in visualization software 

● Standards such as OpenCL may allow program to run cross-platform, but usually still requires 
many architecture specific optimizations to run well 

● Data parallelism: independent processors performs the same task on different pieces of data 
(see Blelloch, “Vector Models for Data Parallel Computing”)  

● Due to the massive data sizes we expect to be simulating we expect data parallelism to be a 
good way to exploit parallelism on current and next generation architectures 

● Thrust is a NVidia C++ template library for CUDA. It can also target other backends such as 
OpenMP, and allows you to program using an interface similar the C++ Standard Template 
Library (STL) 
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Videos of PISTON in Action 

LA-UR-13-23729 LA-UR-14-20028 LA-UR-14-26186 
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Isosurface with Marching Cubes Algorithm 

LA-UR-13-23729 LA-UR-14-26186 
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PISTON Performance 

LA-UR-13-23729 LA-UR-14-26186 
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Integration with VTK and ParaView 

● Filters that use PISTON data types and algorithms integrated into VTK and ParaView 

● Utility filters interconvert between standard VTK data format and PISTON data format 
(thrust device vectors) 

● Supports interop for on-card rendering 

LA-UR-13-23729 LA-UR-14-26186 
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PISTON In-Situ 

● VPIC (Vector Particle in Cell) Kinetic Plasma Simulation Code 

● Implemented an in-situ adapter based on Paraview 
CoProcessing Library (Catalyst) 

● PISTON contour pipeline using ParaView’s PISTON integration 

● CoGL 

● Stand-alone meso-scale simulation code developed as part of 
the Exascale Co-Design Center for Materials in Extreme 
Environments 

● Studies pattern formation in ferroelastic materials using the 
Ginzburg–Landau approach 

● Models cubic-to-tetragonal transitions under dynamic strain 
loading 

● Simulation code and in-situ viz implemented using PISTON  

Output of PISTON contour filter on Hhydro charge 
density at one timestep of VPIC simulation 

PISTON in-situ visualization of  CoGLGinzburg-Landau 
simulation 

LA-UR-13-23729 LA-UR-14-26186 
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Distributed Memory Parallelism 

● Inter-node (distributed memory) parallelism 

● VTK Integration handles domain 
decomposition / image compositing 

● Distributed implementations of Thrust 
primitives using MPI 

– User can treat data as single vectors even 
though values are distributed across nodes 

– Regular Thrust primitives are called for on-
node work, so it takes advantage of 
parallelism both on nodes and across 
nodes 

– Implemented isosurface and KD-tree 
construction algorithms using distributed 
PISTON 
 

Distributed Scan Algorithm 

Isosurface of 3600x2400x42 ocean temperature data computed on 4 GPUs 

LA-UR-13-23729 LA-UR-14-26186 



New Data-parallel Algorithms Accelerate Cosmology Data Analysis on GPUs  

Impact Objectives  
Milestone 
 Implement application-specific visualization and/or analysis operators 

needed for in-situ use by LCF science codes 
 Use PISTON to take advantage of multi-core and many-core 

technologies 
Target Application 
 The Hardware/Hybrid Accelerated Cosmology Code (HACC) 

simulates the distribution of dark matter in the universe over time 
 An important and time-consuming analysis function within this code 

is finding halos (high density regions) and the centers of those halos 
 

VTK-m framework 
 The PISTON component of VTK-m develops data-parallel algorithms that 

are portable across many-core architectures for use by LCF codes 
 PISTON consists of a library of visualization and analysis algorithms 

implemented using Thrust, and our extensions to Thrust 
Halo and Center Finders 
 Data-parallel algorithms for halo and center finding implemented using 

VTK-m (PISTON) allow the code to take advantage of parallelism on 
accelerators such as GPUs 

 Can be used for post-processing or in-situ, with in-situ integration directly 
into HACC or via the CosmoTools library 

Performance Improvements 
 On Moonlight with 10243 particles on 128 nodes with 16 processes per node, 

PISTON on GPUs was 4.9x faster for halo + most bound particle center finding 
 On Titan with 10243 particles on 32 nodes with 1 process per node, PISTON on 

GPUs was 11x faster for halo + most bound particle center finding 
 Portability of PISTON allowed us to also run our algorithms on an Intel Xeon Phi 
 Implemented grid-based most bound particle center finder using a Poisson solver 

that performs fewer total computations than standard O(n2) algorithm 

Science Impact 
 These performance improvements allowed halo analysis to be performed on a 

very large 81923 particle data set across 16,384 nodes on Titan for which analysis 
using the existing CPU algorithms was not feasible 

Publications 
 Submission: “Utilizing Many-Core Accelerators for Halo and Center Finding 

within a Cosmology Simulation” Christopher Sewell, Li-ta Lo, Katrin Heitmann, 
Salman Habib, and James Ahrens 

Accomplishments  

Visual comparison of halos computed by the original HACC algorithms 
(left) and the PISTON algorithms (right).  The results are equivalent, but 

are computed much more quickly on the GPU using PISTON.  

LA-UR-14-26186 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980 

PISTON’s Companion Project: PINION 

● A portable, data-parallel software framework for physics simulations 

● Data structures that allow scientists to program in a way that maps easily to the problem domain rather 
than dealing directly with 1D host/device vectors 

● Operators that provide data-parallel implementations of analysis and computational functions often used 
in physics simulations 

● Backends that optimize implementations of data parallel primitives for one or two emerging 
supercomputer hardware architectures 

 

LA-UR-13-23729 LA-UR-14-26186 
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Selected Mesh Operators 

vertex_to_edges_op Adjacency operator for vertices, given one vertex id, return ids of 4 edges sharing the vertex as {Left, Right, Bottom, 
Top}, -1 means non-existence/boundary edges. 

 vertex_to_cells_op Adjacency operator for vertices, given one vertex id, return ids of 4 cells sharing the vertex as {Lower Left, Lower Right, 
Upper Left,Upper Right}, -1 means non-existence/boundary cells.  

 edge_to_vertices_op Boundary operator for edges, given one edge id, return ids of the two end vertices as {Left, Right} or {Bottom, Top}. 

 edge_to_cells_op Coboundary/adjacency operator for edges, given one edge id, return ids of 2 cell ids sharing the edge. 

 cell_to_edges_op Boundary operator for cells, given one cell id, return ids of 4 edges as {Bottom, Right, Top, Left}. 

cell_to_vertices_op Second order boundary operator for cells, given one cell id, return ids of the 4 vertices as {Lower Left, Lower Right, 
Upper Left, Upper Right}. 

cell_von_neumman_neighbor_op Given a cell return the 4 orthogonal neighboring cells in the following order {West, East, South, North}. 

cell_moore_neighbor_op Given a cell return the 8 neighboring cells in the following order {W, E, S, N, SW, SE, NW, NE}. 

vertex_position_op Given a vertex id, return the coordinates of the position of that vertex.  

cell_center_position_op Given a cell id, return the coordinates of the cell center position of that cell. 

edge_center_position_op Given an edge id, return the coordinates of the edge center position of an edge. 

 edge_normal_op Given an edge id, return the orthogonal vector (i.e. the normal) to that edge. The direction of the normal vector always 
points to the "right" side of the edge. The magnitude of the vector is the length of the edge. 

LA-UR-14-26186 
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Volume Fraction Initialization 

● Description 

• Given computational mesh and 
mathematical expression of a shape 
(circle, square, line,…), compute the 
volume fractions in every cell 

• Vof=0 cell is empty 

• Vof=1 cell is full 

• Divide and conquer algorithm 
• Recursive algorithm 
• Check if vertices are in or out 
• Refine cells up to a given lowest level 

• Implemented in 1D, 2D and 3D 
  

0.8 

Resulting volume fractions for a circle of 
radius 0.25 centered at (0.5,0.5) in a unit 
square. Mesh size is 10x10. 

 thrust::transform(grid.cell_id_begin(),grid.cell_id_end(),    
                   d_vof.begin(),                                                    
        make_vof_init(grid, circle())); 

LA-UR-14-26186 
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Interface Reconstruction: Method 

• Piecewise Linear Interface 
Calculation (PLIC) algorithm 

 
• Given volume fractions, compute the 

interface normal, as the gradient of the 
volume fraction using Green-Gauss 

• Then, find the line equation that 
intersects the computational cell 

• Use of a lookup table to identify 
intersection case 

• At each iteration compute polygon area 
• Iterate until polygon area match the area 

given by the cell volume fraction  

Ref.: Rider W. Kothe D.B., J. Comp. Phys., 1998. 
 
 

Lookup table and 2 examples 

Case 4 

Case 12 

Case 4 Case 12 

0 1 

3 2 

1 

3 

0 

2 
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Interface Reconstruction: Results 

Resulting interface reconstruction planes and interface normals for the case of a circle of radius 0.25 
centered at (0.5,0.5) in a unit square. Mesh size is 10x10. 
 
Movie shows iterative procedure for finding intersection plane that matches the volume fractions. 

LA-UR-14-26186 
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Weak scaling – Interface reconstruction 

Weak scaling plots for the interface reconstruction (iterative volume matching procedure) 
algorithm. The grid sizes range from 2562 to 81922  

LA-UR-14-26186 
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Strong scaling 

Strong scaling obtained on the MIC for a constant grid size of 1,0242  

LA-UR-14-26186 
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Conclusions 

● Data-parallel programming: get portable, parallel code by 
implementing using a few data-parallel primitives 

● PISTON: data-parallel visualization and analysis algorithms 

● PINION: data-parallel simulation codes 

LA-UR-14-26186 
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