
Form 836 (7/06)

LA-UR-
Approved for public release;
distribution is unlimited.

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Title:

Author(s):

Intended for:

14-26186

Data-Parallel Programming With PISTON and PINION

Christopher Sewell
Li-ta Lo
Marianne Francois
James Ahrens

Programming Models and Applications Meeting, Sandia
National Laboratory, August 2014

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Data-Parallel Programming With PISTON and PINION

Chris Sewell
Li-ta Lo

Marianne Francois
James Ahrens

Los Alamos National Laboratory

LA-UR-13-27416 LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Advantages of High-Level Parallel Programming

● Supercomputer Hardware Advances Everyday
– More and more parallelism

– Optimizations tailored to a certain architecture will be obsolete when you implement it

● Parallel Programming APIs Come and Go
– Nobody programs with shaders for GPGPU anymore

– Will this also happen to OpenCL, CUDA, etc. in the future?

● High-Level Parallelism
– Will not change over time

LA-UR-13-27416 LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Blelloch’s “Vector Models for Data-Parallel Computing”

Data Structures
 Graphs: Neighbor reducing, distributing excess across edges
 Trees: Leaffix and rootfix operations, tree manipulations
 Multidimensional arrays
Computational Geometry
 Generalized binary search
 k-D tree
 Closest pair
 Quickhull
 Merge Hull

Graph Algorithms
 Minimum spanning tree
 Maximum flow
 Maximal independent set
Numerical Algorithms
 Matrix-vector multiplication
 Linear-systems solver
 Simplex
 Outer product
 Sparse-matrix multiplication

http://www.cs.cmu.edu/~blelloch/papers/Ble90.pdf

LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

NVIDIA’s Thrust Library

● Thrust is an open-source C++ template
library developed by NVIDIA

● It allows the user to write CUDA programs
using an STL-like interface, without having
to know CUDA-specific syntax or functions

● In addition to CUDA, it has backends for
OpenMP and Intel TBB, and can be
extended to support additional backends

● It implements many data-parallel primitives,
with user-defined functors

● It provides thrust::host_vector and
thrust::device_vector, simplifying memory
management and data transfer between
the host and device

LA-UR-12-26127

Sample Thrust code to compute vector norm

LA-UR-13-21884 LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

How PISTON/PINION Leverage Thrust

● Thrust provides:

● An STL-like interface for memory management (host/device vectors) and data-parallel
algorithms

● Backend implementations of the data-parallel algorithms for CUDA, as well as slightly
less-developed implementations for OpenMP and TBB

● PISTON/PINION intend to provide:

● A library of visualization and analysis operators implemented using Thrust

● A data model for simulation meshes (e.g., VTK structured grids, unstructured grids, AMR)

● Simulation operators (e.g., advection, interface reconstruction, etc.)

● PISTON/PINION intend to enhance:

● Non-CUDA backends (e.g., OpenCL prototype, optimize OpenMP for Xeon Phi, etc.)

● Interface to support distributed memory operations

LA-UR-13-21884 LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Simple Examples with Thrust Pseudocode

● Generate
thrust::sequence(0,4) 0 1 2 3 4

● Transform
input 4 5 2 1 3
thrust::transform(+1) 5 6 3 2 4

● Compact
input 4 5 2 1 3
thrust::copy_if(even) 4 2

● Expand
input 4 5 2 1 3
thrust::for_each(x,2x) 4 8 5 10 2 4 1 2 3 6

● Aggregate
input 4 5 2 1 3
thrust::reduce(+) 15

LA-UR-13-27416 LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Generate Data in Parallel

● Many copies of a certain constant value
– // Ten elements with initial value of integer 1

thrust::device_vector<int> x(10, 1);

● A sequence of increasing or decreasing values
– // Allocate space for ten integers, uninitialized

thrust::device_vector<int> y(10);
// Fill the space with integers
thrust::sequence(y.begin(), y.end(), 5, 2);

● Random Values
– Multiple copies of a random number generator

– Give each one a different seed

LA-UR-13-27416 LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Transform: Uniform Sampling
of a Mathematical Function

● Q: How are we going to generate something more complicated?
A: Start from some sequence and apply some transformation

● Sampling the function f(x) = x2 in the interval of [0, 1]
– // Generate a sequence of xi in [0,1] with dx=0.1

// in between each of them
float dx = 1.0f/10.0f;
thrust::sequence(x.begin(), x.end(), 0.0f, dx);

// Apply the square operation to each of the xi
// to transform into f(xi) = yi = xi2
thrust::transform(x.begin(), x.end(),
 y.begin(),
 square());

LA-UR-13-27416

x: 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
y: 0.0 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1.0

LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Reduce: Simple Numerical Integration

● Apply what we learned to estimate the
area under a curve

● Create a constant vector of widths

● Create a vector of heights from the
function values

● Apply multiply operation on each
element of width and height

● Sum all the computed areas to get the
total area

● In calculus, this is a method of
estimating the integral ∑∫

=

∆≈
n

i
i xxfdxxf

1

1

0

)()(

LA-UR-13-27416 LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Simple Numerical Integration: Example

thrust::device_vector<int> width(11, 0.1);
width = 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

thrust::sequence(x.begin(), x.end(), 0.0f, 0.1f);
x = 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

thrust::transform(x.begin(), x.end(), height.begin(), square());
height = 0.0 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81 1.0

thrust::transform(width.begin(), width.end(), height.begin(), area.begin(),
thrust::multiplies<float>())
area = 0.0 0.001 0.004 0.009 0.016 0.025 0.036 0.049 0.064 0.081 0.1

total_area = thrust::reduce(area.begin(), area.end());
total_area = 0.385

thrust::inclusive_scan(area.begin(), area.end(), accum_areas.begin());
accum_areas = 0.0 0.001 0.005 0.014 0.030 0.055 0.091 0.140 0.204 0.285 0.385

LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Scan: Calculating the Fibonacci Sequence
by Matrix Multiplication

● The reduce and scan operators can also work with a user defined type

● The Fibonacci Sequence is defined as
 with

● By “unrolling” the recurrence we have

● Thus we can compute Fn by matrix multiplication

11 −+ += nnn FFF 1,0 10 == FF

















=









−

+

1

1

01
11

n

n

n

n

F
F

F
F



















































































35
58

23
35

12
23

11
12

01
11

01
11

01
11

01
11

01
11

01
11

LA-UR-13-27416 LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Compaction: Finding Prime Numbers
Using the Sieve of Eratosthenes

● Start with a vector containing the sequence of integers from 2 to N

● The first element in this vector is prime

● Use compaction to copy only elements of the vector not divisible by
this prime into an updated vector (Thrust copy_if operator)

● The second element in this vector is prime

● Repeat the two steps above until you reach the end of the vector

● 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2 3 5 7 9 11 13 15
2 3 5 7 11 13
2 3 5 7 11 13
2 3 5 7 11 13
2 3 5 7 11 13

LA-UR-13-27416 LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

SDAV VTK-m Frameworks

● Objective: Enhance existing multi/many-core technologies in
anticipation of in situ analysis use cases with LCF codes

● Benefit to scientists: These frameworks will make it easier for domain
scientists’ simulation codes to take advantage of the parallelism
available on a wide range of current and next-generation hardware
architectures, especially with regards to visualization and analysis tasks

● Projects

● EAVL, Oak Ridge National Laboratory

● Dax, Sandia National Laboratory

● PISTON, Los Alamos National Laboratory

● Work on integrating these projects with VTK is on-going, in
collaboration with Kitware

 LA-UR-13-23729 LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON: A Portable Data-Parallel Visualization and Analysis
Framework

 Goal: Portability and performance for visualization and analysis operators on current and
next-generation supercomputers

 Main idea: Write operators using only data-parallel primitives (scan, reduce, etc.)

 Requires architecture-specific optimizations for only for the small set of primitives

 PISTON is built on top of NVIDIA’s Thrust Library

LA-UR-13-23729 LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Motivation and Background

● Current production visualization software does not take full advantage of acceleration
hardware and/or multi-core architecture

● Research on accelerating visualization operations are mostly hardware-specific; few were
integrated in visualization software

● Standards such as OpenCL may allow program to run cross-platform, but usually still requires
many architecture specific optimizations to run well

● Data parallelism: independent processors performs the same task on different pieces of data
(see Blelloch, “Vector Models for Data Parallel Computing”)

● Due to the massive data sizes we expect to be simulating we expect data parallelism to be a
good way to exploit parallelism on current and next generation architectures

● Thrust is a NVidia C++ template library for CUDA. It can also target other backends such as
OpenMP, and allows you to program using an interface similar the C++ Standard Template
Library (STL)

LA-UR-13-23729 LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Videos of PISTON in Action

LA-UR-13-23729 LA-UR-14-20028 LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Isosurface with Marching Cubes Algorithm

LA-UR-13-23729 LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON Performance

LA-UR-13-23729 LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Integration with VTK and ParaView

● Filters that use PISTON data types and algorithms integrated into VTK and ParaView

● Utility filters interconvert between standard VTK data format and PISTON data format
(thrust device vectors)

● Supports interop for on-card rendering

LA-UR-13-23729 LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON In-Situ

● VPIC (Vector Particle in Cell) Kinetic Plasma Simulation Code

● Implemented an in-situ adapter based on Paraview
CoProcessing Library (Catalyst)

● PISTON contour pipeline using ParaView’s PISTON integration

● CoGL

● Stand-alone meso-scale simulation code developed as part of
the Exascale Co-Design Center for Materials in Extreme
Environments

● Studies pattern formation in ferroelastic materials using the
Ginzburg–Landau approach

● Models cubic-to-tetragonal transitions under dynamic strain
loading

● Simulation code and in-situ viz implemented using PISTON

Output of PISTON contour filter on Hhydro charge
density at one timestep of VPIC simulation

PISTON in-situ visualization of CoGLGinzburg-Landau
simulation

LA-UR-13-23729 LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Distributed Memory Parallelism

● Inter-node (distributed memory) parallelism

● VTK Integration handles domain
decomposition / image compositing

● Distributed implementations of Thrust
primitives using MPI

– User can treat data as single vectors even
though values are distributed across nodes

– Regular Thrust primitives are called for on-
node work, so it takes advantage of
parallelism both on nodes and across
nodes

– Implemented isosurface and KD-tree
construction algorithms using distributed
PISTON

Distributed Scan Algorithm

Isosurface of 3600x2400x42 ocean temperature data computed on 4 GPUs

LA-UR-13-23729 LA-UR-14-26186

New Data-parallel Algorithms Accelerate Cosmology Data Analysis on GPUs

Impact Objectives
Milestone
 Implement application-specific visualization and/or analysis operators

needed for in-situ use by LCF science codes
 Use PISTON to take advantage of multi-core and many-core

technologies
Target Application
 The Hardware/Hybrid Accelerated Cosmology Code (HACC)

simulates the distribution of dark matter in the universe over time
 An important and time-consuming analysis function within this code

is finding halos (high density regions) and the centers of those halos

VTK-m framework
 The PISTON component of VTK-m develops data-parallel algorithms that

are portable across many-core architectures for use by LCF codes
 PISTON consists of a library of visualization and analysis algorithms

implemented using Thrust, and our extensions to Thrust
Halo and Center Finders
 Data-parallel algorithms for halo and center finding implemented using

VTK-m (PISTON) allow the code to take advantage of parallelism on
accelerators such as GPUs

 Can be used for post-processing or in-situ, with in-situ integration directly
into HACC or via the CosmoTools library

Performance Improvements
 On Moonlight with 10243 particles on 128 nodes with 16 processes per node,

PISTON on GPUs was 4.9x faster for halo + most bound particle center finding
 On Titan with 10243 particles on 32 nodes with 1 process per node, PISTON on

GPUs was 11x faster for halo + most bound particle center finding
 Portability of PISTON allowed us to also run our algorithms on an Intel Xeon Phi
 Implemented grid-based most bound particle center finder using a Poisson solver

that performs fewer total computations than standard O(n2) algorithm

Science Impact
 These performance improvements allowed halo analysis to be performed on a

very large 81923 particle data set across 16,384 nodes on Titan for which analysis
using the existing CPU algorithms was not feasible

Publications
 Submission: “Utilizing Many-Core Accelerators for Halo and Center Finding

within a Cosmology Simulation” Christopher Sewell, Li-ta Lo, Katrin Heitmann,
Salman Habib, and James Ahrens

Accomplishments

Visual comparison of halos computed by the original HACC algorithms
(left) and the PISTON algorithms (right). The results are equivalent, but

are computed much more quickly on the GPU using PISTON.

LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON’s Companion Project: PINION

● A portable, data-parallel software framework for physics simulations

● Data structures that allow scientists to program in a way that maps easily to the problem domain rather
than dealing directly with 1D host/device vectors

● Operators that provide data-parallel implementations of analysis and computational functions often used
in physics simulations

● Backends that optimize implementations of data parallel primitives for one or two emerging
supercomputer hardware architectures

LA-UR-13-23729 LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Selected Mesh Operators

vertex_to_edges_op Adjacency operator for vertices, given one vertex id, return ids of 4 edges sharing the vertex as {Left, Right, Bottom,
Top}, -1 means non-existence/boundary edges.

 vertex_to_cells_op Adjacency operator for vertices, given one vertex id, return ids of 4 cells sharing the vertex as {Lower Left, Lower Right,
Upper Left,Upper Right}, -1 means non-existence/boundary cells.

 edge_to_vertices_op Boundary operator for edges, given one edge id, return ids of the two end vertices as {Left, Right} or {Bottom, Top}.

 edge_to_cells_op Coboundary/adjacency operator for edges, given one edge id, return ids of 2 cell ids sharing the edge.

 cell_to_edges_op Boundary operator for cells, given one cell id, return ids of 4 edges as {Bottom, Right, Top, Left}.

cell_to_vertices_op Second order boundary operator for cells, given one cell id, return ids of the 4 vertices as {Lower Left, Lower Right,
Upper Left, Upper Right}.

cell_von_neumman_neighbor_op Given a cell return the 4 orthogonal neighboring cells in the following order {West, East, South, North}.

cell_moore_neighbor_op Given a cell return the 8 neighboring cells in the following order {W, E, S, N, SW, SE, NW, NE}.

vertex_position_op Given a vertex id, return the coordinates of the position of that vertex.

cell_center_position_op Given a cell id, return the coordinates of the cell center position of that cell.

edge_center_position_op Given an edge id, return the coordinates of the edge center position of an edge.

 edge_normal_op Given an edge id, return the orthogonal vector (i.e. the normal) to that edge. The direction of the normal vector always
points to the "right" side of the edge. The magnitude of the vector is the length of the edge.

LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Volume Fraction Initialization

● Description

• Given computational mesh and
mathematical expression of a shape
(circle, square, line,…), compute the
volume fractions in every cell

• Vof=0 cell is empty

• Vof=1 cell is full

• Divide and conquer algorithm
• Recursive algorithm
• Check if vertices are in or out
• Refine cells up to a given lowest level

• Implemented in 1D, 2D and 3D

0.8

Resulting volume fractions for a circle of
radius 0.25 centered at (0.5,0.5) in a unit
square. Mesh size is 10x10.

 thrust::transform(grid.cell_id_begin(),grid.cell_id_end(),
 d_vof.begin(),
 make_vof_init(grid, circle()));

LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Interface Reconstruction: Method

• Piecewise Linear Interface
Calculation (PLIC) algorithm

• Given volume fractions, compute the

interface normal, as the gradient of the
volume fraction using Green-Gauss

• Then, find the line equation that
intersects the computational cell

• Use of a lookup table to identify
intersection case

• At each iteration compute polygon area
• Iterate until polygon area match the area

given by the cell volume fraction

Ref.: Rider W. Kothe D.B., J. Comp. Phys., 1998.

Lookup table and 2 examples

Case 4

Case 12

Case 4 Case 12

0 1

3 2

1

3

0

2

LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Interface Reconstruction: Results

Resulting interface reconstruction planes and interface normals for the case of a circle of radius 0.25
centered at (0.5,0.5) in a unit square. Mesh size is 10x10.

Movie shows iterative procedure for finding intersection plane that matches the volume fractions.

LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Weak scaling – Interface reconstruction

Weak scaling plots for the interface reconstruction (iterative volume matching procedure)
algorithm. The grid sizes range from 2562 to 81922

LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Strong scaling

Strong scaling obtained on the MIC for a constant grid size of 1,0242

LA-UR-14-26186

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Conclusions

● Data-parallel programming: get portable, parallel code by
implementing using a few data-parallel primitives

● PISTON: data-parallel visualization and analysis algorithms

● PINION: data-parallel simulation codes

LA-UR-14-26186

	PMAPPLAURCover
	PMAPP-SewellPINION
	Data-Parallel Programming With PISTON and PINION
	Advantages of High-Level Parallel Programming
	Blelloch’s “Vector Models for Data-Parallel Computing”
	NVIDIA’s Thrust Library
	How PISTON/PINION Leverage Thrust
	Simple Examples with Thrust Pseudocode
	Generate Data in Parallel
	Transform: Uniform Sampling �of a Mathematical Function
	Reduce: Simple Numerical Integration
	Simple Numerical Integration: Example
	Scan: Calculating the Fibonacci Sequence �by Matrix Multiplication
	Compaction: Finding Prime Numbers �Using the Sieve of Eratosthenes
	SDAV VTK-m Frameworks
	PISTON: A Portable Data-Parallel Visualization and Analysis Framework
	Motivation and Background
	Videos of PISTON in Action
	Isosurface with Marching Cubes Algorithm
	PISTON Performance
	Integration with VTK and ParaView
	PISTON In-Situ
	Distributed Memory Parallelism
	New Data-parallel Algorithms Accelerate Cosmology Data Analysis on GPUs
	PISTON’s Companion Project: PINION
	Selected Mesh Operators
	Volume Fraction Initialization
	Interface Reconstruction: Method
	Interface Reconstruction: Results
	Weak scaling – Interface reconstruction
	Strong scaling
	Conclusions

