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ver the past three decades, supercomput-

ing systems have progressed to compute

the results of extremely accurate scien-
tific simulations. These simulations help us un-
derstand complex real-world phenomena such as
our climate, energy sources, and the progression
of natural disasters. Additional computing power
supports the computation of higher-quality simu-
lations, and that in turn provides higher fidelity
results. Using the number of floating-point opera-
tions per second (flops) as a measure of progress,
we have progressed through terascale machines
that compute 10** flops to petascale machines that
compute 10" flops. A number of open source efforts
provide a robust scalable visualization and analy-
sis capability such as ParaView (www.paraview.org)
and Visit (https://visit.linl.gov) for these levels of

performance. These tools traditionally focus on a
postprocessing approach. That is, during a simula-
tion run, representative results are written to stor-
age for later visualization.

The international community is looking toward
the next jump in performance: exascale supercom-
puters that compute 10*® flops. Creating an exas-
cale simulation environment will be a significant
challenge due to power and storage technology
trends. Responding to these challenges will re-
quire rethinking and reframing how we approach
visualization and analysis at the exascale. A key
difference from the terascale and petascale eras
is the need to keep track of a cost per insight in
terms of power and storage used. This notion of
constraints on our insights challenges the premise
of our traditional postprocessing approach.

In a traditional postprocessing-oriented visu-
alization and analysis approach, temporal simu-
lation snapshots are saved at regular intervals.
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This approach incorporates the process of saving
checkpoints for later restart in case of errors. Tra-
ditionally, these full simulation checkpoint snap-
shots and additional smaller visualization and
analysis data are interactively analyzed after the
simulation run is complete. The visualization and
analysis community has identified this approach as
unworkable at the exascale because of power and
storage constraints. An emerging consensus is that
significantly more visualization and analysis should
occur in situ—that is, during the simulation run
while the data is resident in memory. Thus, emerg-
ing research challenges include exploring what
types of analysis questions can be answered during
postprocessing with compact data products that are
generated in situ and what mathematical or statis-
tical techniques will best support this process.

Current Constraints

Power constraints are driven by reducing the many
financial costs, including facility, power, and
cooling costs, associated with the massive power
requirements that are projected for an exascale
machine without research and development inter-
ventions. Specifically, the United States Depart-
ment of Energy's exascale strategy identifies target
goals for peak performance to increase three or-
ders of magnitude while system power is only tar-
geted to increase by a factor of two. To keep within
an extremely limited power budget, locality dur-
ing computation is extremely important. The most
expensive operation is data movement, from both
the power and performance perspective, moving
data up from the CPU out through the memory hi-
erarchy including out to persistent storage and the
network. Figure 1 shows the approximate power
cost of moving a single bit.!
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Storage constraints are also driven by financial
costs including power costs. Future storage tech-
nology projections suggest that the gap between
both capacity/bandwidth and flops will widen as
we move toward exascale. Therefore, we expect
the storage system of an exascale supercomputer
to be smaller and slower compared in a relative
way with the peak flops of today’s generation of
supercomputers for a proportionally similar level
of investment.

Deliberate Analysis Choices Are Necessary

In a traditional postprocessing approach, during
a simulation run, full simulation snapshots are
saved. This has led to the belief that these snap-
shots can answer arbitrary analysis postprocessing
questions because “all the data has been saved.”
However, as we have discussed, this is not necessar-
ily true for the time domain. A related belief about
in situ techniques is that automatic selection of
data at runtime reduces the type of questions that
can be asked about the data during postprocessing
analysis. It is important to recognize the traditional
postprocessing approach of saving full simulation
snapshots is, in and of itself, an inherently in situ
activity. Saving full simulation snapshots in time is
simply one choice among many for extracting data
and information from running simulations.

An alternative perspective is to consider what sci-
entific insights are sought, balanced by power and
storage constraints, and then output only the min-
imal analysis data needed during the simulation
run. In the observational/experimental commu-
nity, preplanned data reducing streaming analysis
is common practice. Custom software and hard-
ware accelerators are typically employed to reduce
and analyze data in real time for accelerator phys-
ics, fusion reactors, and cybersecurity. Our focus
on in situ approaches aligns the supercomputing
community with the observational/experimen-
tal community supporting synergistic approaches
in the future. In this case, there are key research
questions to answer: How general and with what
quality can analysis questions be answered during
postprocessing with compact data products that
are generated in situ? What new mathematical or
analysis techniques will support this process?

In Situ Sampling

During in situ data analysis, the analyst has ac-
cess to the entire simulation data in all its com-
plexity, including spatial, temporal, multivariate,
and variable type domains. This data is available
only briefly at simulation runtime when it resides
in memory, and it is then overwritten when the
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Figure 1. Approximate p cost of ring a singl
bit, assuming the bit starts in a register and moves to
the location listed on the y axis.' Our expectation is
that the power cost of in situ analysis is significantly
less than postprocessing analysis because in situ
occurs while simulation data is in register or memory

and has not been written to storage.

simulation advances. Given our budgeting con-
straints, it becomes clear that in situ analysis is a
form of sampling. The traditional workflow sam-
ples fully on the spatial, multivariate, and variable
type domains at the expense of sampling fully in
the temporal domain.

Spatial Sampling
Simulation scientists have the opportunity to sig-
nificantly increase the quality of their analysis
results by choosing how to sample from each do-
main. The quality of their results can be measured
through combined in situ sampling and uncer-
tainty quantification techniques. For example, in
our work, we statistically sample using a stratified
random sampling approach on the MC? cosmologi-
cal particle simulation. We store these samples in
a level-of-detail organization for later interactive
progressive visualization and feature analysis. By
sampling during the simulation, we are able to
analyze the entire particle population to record
full population statistics and quantify sample er-
ror.? Figure 2 shows this sampling visually. In the
figure, a set of two camera positions that differ by
zoom level of the same comsology simulation result
are shown. The visualization system streams in the
particles it needs from the stored multiresolution
sampled result to achieve the same screen density.
The key idea of this work is to only save and use
the amount of data needed to complete the visual-
ization and analysis task. Thus, conceptually with
this technique we could sample and render a mas-
sive petascale (10%%) or exascale (10') sized result
to an image with on the order of only 10° pixels.

Temporal Sampling

Our goal is to reduce the simulation data stream to
a compact analysis product that fits within a given
budget. This reduction does not have to be via a

IEEE Computer Graphics and Applications

3/12/15,7:51 AM



30f4

http://online.qmags.com/CGAO0315/printpage.aspx 7pg=10,11,12...

Visualization Viewpoints

(a)

(b)

Figure 2. A visualization of the MC® cosmology simulation. (a) Full simulation visualization. (b) In this second image, the number
of particles sampled and rendered is significantly less and is chosen to achieve a constant screen density.
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Figure 3. Time step plots for an asteroid deflection simulation. (a) Traditional plot when time steps are saved on a regular basis

every 500 time steps. (b) Plot of when time steps are saved based on their entropy. Images with the highest entropy that are

saved to storage are recorded as tick marks in this plot.
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statistical sampling; visualization operations and
feature extraction algorithms canalso be considered
a type of sampling strategy. An interesting way to
approach the inclusion of the most important data
within a budget is to prioritize data using a greedy
algorithm saving the highest priority information
as the simulation progresses. For example, in recent
work we measured temporal entropy in a running
simulation.? A memory buffer collected time steps
with the highest entropy by having time steps
with higher entropy overwrite ones with lower
entropy. The resulting collection of high entropy
time steps provides a summary of the phases of
the simulations in which the most change occurs.
Figure 3 presents plots of when imagery is saved
from an asteroid deflection simulation. The y axis
is the time-step number. A tick mark records that
an image was saved at a specific time step.

Figure 4 show the results from a 2D asteroid
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deflection scenario simulation. The sequence of
images provides a content driven summary of the
phases of the simulations. The images were se-
lected as representatives of the three phases shown
in Figure 3b.

Thc sampling and automated selection tech-
niques highlighted here are offered as ideas as
to how supercomputing visualization and analysis
will change in the future. As the supercomput-
ing visualization and analysis community transi-
tions to in situ approaches, there are numerous
opportunities for new research and development
in representations, algorithms, and automation
techniques to enable scientific discovery at the ex-
ascale. The community is open to new ideas and
looks forward to your participation as we tackle
these emerging challenges. "
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(b)

(d)

Figure 4. A sequence of images from an asteroid impact simulation. The times of the images in the sequence
are (a) 0, (b) 1153, (¢) 4831, and (d) 11405, illustrating the three phases shown in Figure 3b. The camera
automatically adjusts to keep the highest entropy portion of the simulation centered in each view.
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