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ABSTRACT

Efficiently finding and computing statistics about “halos” (regions
of high density) are essential analysis steps for N-body cosmology
simulations. However, in state-of-the-art simulation codes, these
analysis operators do not currently take advantage of the shared-
memory data-parallelism available on multi-core and many-core ar-
chitectures. The Hybrid / Hardware Accelerated Cosmology Code
(HACC) is designed as an MPI+X code, but the analysis operators
are parallelized only among MPI ranks, because of the difficulty in
porting different X implementations (e.g., OpenMP, CUDA) across
all architectures on which it is run. In this paper, we present
portable data-parallel algorithms for several variations of halo find-
ing and halo center finding algorithms. These are implemented
with the PISTON component of the VTK-m framework, which uses
Nvidia’s Thrust library to construct data-parallel algorithms that al-
low a single implementation to be compiled to multiple backends
to target a variety of multi-core and many-core architectures. Fi-
nally, we compare the performance of our halo and center find-
ing algorithms against the original HACC implementations on the
Moonlight, Stampede, and Titan supercomputers. The portability
of Thrust allowed the same code to run efficiently on each of these
architectures. On Titan, the performance improvements using our
code have enabled halo analysis to be performed on a very large
data set (81923 particles across 16,384 nodes of Titan) for which
analysis using only the existing CPU algorithms was not feasible.

Index Terms: D.1.3 [Software]: Programming Techniques—
[Concurrent Prgm.]

1 INTRODUCTION

The identification of halos (regions with a high density of dark mat-
ter particles) is one of the most important analysis steps in an N-
body simulation. The halos carry information about structure for-
mation, galaxy formation, and the content of the universe. Accu-
rately determining the halo centers is critical for computing mass
functions and for comparing simulation results with observations.

Computing halos and their statistics (especially their centers) can
be very computationally demanding, and can be the limiting factor
for the number of particles used in a simulation. In order to achieve
ever higher levels of accuracy, current cosmology simulations may
use hundreds of billions of particles. While major cosmology sim-
ulation codes such as HACC (Hybrid/Hardware Accelerated Cos-
mology Code) [9, 10] have long had the ability to parallelize such
computations by partitioning particles across MPI ranks, and are
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designed as MPI+X codes, they do not currently take advantage of
many-core accelerators for analysis computations, due in large part
to the difficulty of porting such code across architectures.

The need to support the cross-product of multiple variants of halo
and center finding definitions with all current and emerging multi-
/many-core architectures is a major burden for a cosmology simula-
tion code. Abstracting the architecture-specific optimizations from
the algorithms using a portable, data-parallel framework reduces
this code growth to scale linearly with the number of algorithms
and architectures rather than quadratically with their product.

The primary contribution of this paper is to illustrate our ap-
proach of providing portable, data-parallel algorithms for large-
scale high-performance data analytics on multi-core and GPU ar-
chitectures. We provide detailed descriptions and results for the al-
gorithms we developed for halo analysis in a cosmology simulation.
We believe that utilizing such an approach should facilitate infor-
mation extraction and knowledge discovery from big data across a
broad range of scientific applications.

In this paper, we present data-parallel algorithms for halo and
center finding operators. These algorithms have been implemented
using PISTON, which is a framework for constructing portable
data-parallel functions. PISTON is a component of the VTK-m
project within the SDAV SciDAC Institute. Making use of Nvidia’s
Thrust library, code written using PISTON/VTK-m can be com-
piled to different backends, including CUDA, OpenMP, Intel TBB.
It has previously been demonstrated that PISTON algorithms can
make efficient use of available parallelism on a variety of multi-core
and many-core architectures, including multi-core CPUs, Nvidia
and AMD GPUs, and Intel Xeon Phis, by simply changing a com-
pile flag [16, 20]. This portability is critical to the scientists, be-
cause they often do not have the resources to rewrite and reoptimize
their algorithms for each architecture separately.

The performance improvements using our code have enabled
halo analysis to be performed on a very large data set (81923 par-
ticles across 16,384 Titan nodes) for which analysis using only the
existing CPU algorithms was not feasible, while the portability of
our data-parallel approach allowed the same analysis code to be
compiled and run on several architectures, including Nvidia GPU
and Intel Xeon Phi. The science results enabled in part by this anal-
ysis for the “Q Continuum” run are described in detail in [11].

2 COSMOLOGY APPLICATION

A very simplified picture describes the process of galaxy formation
in the following way. The dark matter halo is a massive, gravitation-
ally bound object. Hot gas falls into this potential well, heats up,
and star formation is triggered. These stars eventually form galax-
ies. Halos merge over time and accrete mass from the surrounding
area and some halos grow large enough to host many galaxies, re-
sulting in so-called clusters of galaxies. The age of a halo and its
formation history also carries information about the type of galax-
ies that will reside inside it: if a halo formed very early, the star
formation in the galaxy slowed down over time and at the current
epoch, such a halo will host a red (in astronomy terms, “dead”)



large galaxy. If the halo is still very young, the galaxies inside it
will still be star forming and therefore blue.

Halos also carry information about the content of the universe. In
a simulation, we specify the amount of dark matter and dark energy
and the amplitude of the primordial power spectrum at the start of
the simulation. The number of halos as a function of their mass (the
so-called mass function) will change depending on the cosmologi-
cal parameters input into the simulation. The mass function can be
measured from a diverse set of observations (X-ray, optical or cos-
mic microwave background observations are recent examples) and
can be compared to the theoretical predictions to extract cosmolog-
ical parameters. In particular, clusters of galaxies (and therefore
halos at the high mass end) are very sensitive to cosmological pa-
rameters, in particular to dark energy. They are therefore one of the
major dark energy probes used in ongoing and upcoming surveys.

One caveat about the dark matter halos is that we do not observe
the dark matter directly, but we observe it rather through tracers,
like hot gas in the X-ray or the distribution of galaxies in the op-
tical. This leads to a difficulty in the definition of the halo. De-
pending on the observation of interest, different halo definitions are
therefore used. For X-ray observations, the temperature of the gas
is connected to the mass of the dark matter halo. Here, the most
convenient mass definition is given by the spherical overdensity
(SO) mass within a small radius. Often an overdensity of 500 or
1000 with respect to the critical density of the universe is used.
From, for example, weak lensing mass maps, it is very obvious
though that halos are not spherical. Therefore, another commonly
used definition for halos is the friends-of-friends (FOF) definition.
The FOF halo finding algorithm traces the iso-density contours of
halos, therefore allowing it to capture the nontrivial boundaries of
a halo more accurately. If the simulation has enough resolution,
halos within halos (so-called subhalos) can also be identified and
galaxies will live within those structures. Therefore, for optical ob-
servations, the use of the FOF halo definition is more useful than
the overdensity definition. The halo mass function for the FOF
halo definition at one specific linking length (b=0.2) has been found
to be very close to universal. This universality allows us to make
predictions for the mass function using only ingredients from lin-
ear theory, once the universal form itself was calibrated carefully
against one cosmological model.

Finally, a very accurate determination of the halo center is cru-
cial for all the above. If the halo center is not at the potential min-
imum, the SO mass will be biased low. The correct placement of
the central galaxy in the halo is also very important for compari-
son with observations. Halo properties like the concentration again
rely heavily on accurate center determination. Due to the high com-
putational cost of computing the potential minimum particle, other
definitions for halo center are sometimes used instead.

3 RELATED WORK

The friend-of-friends (FOF) halo finding algorithm is very com-
monly employed to efficiently identify groupings of particles [14].
It can function as a stand-alone isodensity-based halo-finder, as a
base algorithm for sub-halo finding using hierarchical FOF, or FOF
in phase space. Each particle is connected to its “friends”; that is, to
all other particles within a specified “linking length” distance to it.
Two particles will end up in the same halo if there exists any chain
of friends between them.

Distributed-memory parallel algorithms have been developed in
order to divide the work of halo finding and center finding across
processors. For example, the parallel halo finder in HACC dis-
tributes the particles among all processes, each of which runs an
efficient serial halo finder algorithm which constructs and traverses
a KD-tree [13, 26]. Particles in “overload regions” are distributed
to two processes, with the size of the overload regions related to the
maximum feasible halo length, in order to ensure that each halo is

found in its entirety by at least one process. After each process has
computed its halos, the parallel halo finder identifies redundant ha-
los found by neighboring processes and assigns them to one or the
other. Similarly, the Parallel HOP code utilizes MPI and domain
decomposition to parallelize halo finding [22].

In contrast, our halo and center finder algorithms take advan-
tage of shared-memory parallelism within a single MPI process, as
found on many-core accelerators. As such, they can serve as a re-
placement for the serial algorithms used within each process while
still making use of these same distributed memory domain decom-
position algorithms to parallelize across nodes.

Our friend-of-friends halo finder algorithm is based on a standard
parallel connected component algorithm [21, 1, 15], with an edge
assumed to exist between two particles if and only if the distance
between them is less than the specified “linking length” parame-
ter. GPU implementations for a variety of connected components
algorithms have been presented [17, 25, 23, 12, 18]. However, one
significant difference between the standard connected component
problem and the friend-of-friends halo finding problem is that most
connected component algorithms assume that either an adjacency
matrix or an edge list are available as input. Since the memory lim-
itations of accelerators preclude in-memory storage of all edges in
this application, we extend this algorithm to efficiently find the ha-
los without ever explicitly storing an edge list or adjacency matrix.

One common definition for the center of a halo is the “most
bound particle” (MBP): the particle within a halo with the lowest
potential, where the potential for a given particle is computed as
the sum over all other particles of the negative of mass divided by
distance. The most straightforward way to find this is to simply
compute the potential for each particle and then take the minimum,
which requires O(n2) operations. HACC optimizes this using an A*
search algorithm, which uses an optimistic heuristic to estimate the
potential for each particle, and locates the particle with minimum
potential through the search without having to explicitly compute
the potentials for all particles. It has been reported that this algo-
rithm reduces the time compared to the brute force approach by a
constant factor of approximately eight [6].

Due to the time it takes to compute the true MBP center, various
other methods have been devised to estimate the center. One of the
most common is to identify the “most connected particle” (MCP),
which is the particle within the halo with the most friends. In most
halos, such as those with a roughly spherical shape, one would ex-
pect to find the MCP in a region of high density that is close to
the MBP. However, there are cases (such as a bar-bell shaped halo)
where the MCP center may be far from the MBP center.

Our MBP center finding algorithm exploits the highly parallel
nature of the problem of computing pairwise potentials to make use
of the large core counts on many-core accelerators such as GPUs.
Finding the MCP center is a simple extension to the traversal of
virtual edge lists in our FOF halo finder using particle binning.

The DBSCAN algorithm [19] is a generalization of the friend-of-
friends halo finding algorithm. It will only include particles with at
least f friends as part of any halo. (For the standard FOF algorithm,
f = 1.) Thus, it can eliminate spurious combinations of distinct
halos via a long, narrow string of connected particles. A version
of this algorithm is implemented as a simple extension to our FOF
halo algorithm by excluding from consideration any particle with
too few friends while traversing the virtual edge lists.

A spherically overdense (SO) halo finder finds a center and ra-
dius of a sphere such that the density ratio within it matches a spec-
ified value [24]. In HACC, the SO halo finder starts with the center
of a FOF halo, and then searches for a radius that meets the crite-
rion. In this paper, we do not present a data-parallel algorithm for
computing SO halos themseleves. However, in practice, the most
time-consuming step in finding SO halos is computing the FOF halo
centers used to seed the SO halos. Since our FOF halo finding and



center finding algorithms output their results to the standard HACC
data structures on the CPU, they can be used interchangably with
existing CPU algorithms, such as SO halo finding. Thus, we can
greatly accelerate the overall process of finding SO halos by using
the data-parallel algorithms to compute MBP centers on the GPU.

GPU implementations of a Poisson solver have previously been
used for accelerating scientific computations. For example, it has
been used to solve the two-dimensional barotropic vorticity equa-
tion in ocean dynamics [3], and for the Particle Mesh Ewald method
in molecular dynamics [5]. However, to our knowledge, it has not
been used for MBP center finding in cosmology simulations.

4 DATA PARALLELISM

Our halo and center finding algorithms have been built using data-
parallel primitives, which are portable across multi-core/many-core
architectures. Data parallelism is a programming model in which
independent processors perform the same operation on different
pieces of data. In 1990, Guy Blelloch described a scan vector
model, consisting of a set of data-parallel primitives very similar to
those now available in Thrust. He outlined a variety of higher-level
algorithms constructed using this scan vector model in the fields
of data structures, computational geometry, graphs, and numerical
analysis [4]. Since each of these data-parallel primitives can be im-
plemented efficiently on a wide range of parallel architectures, an
algorithm that uses only these primitives will then likely be very
efficient and portable. Thrust provides implementations for such
primitives on GPU and multi-core CPU architectures.

Examples of several of these data-parallel primitives, which are
used in our halo and center finding algorithms, are given in Fig-
ure 1. Line 1 performs a unary transform, in which a user-
defined functor (add constant) is applied to each element of
vector B, with the results stored in C. The for each primi-
tive, shown in Line 2, is similar, but allows for side effects. It
can generate more or fewer elements in its output than in the in-
put. Here, for each takes a range of indexes as input, using
a virtual vector of consecutive integers known as a counting iter-
ator, and applies a user-defined functor double it, which, for
each index, outputs into C both the value of B at that index,
and twice that value. An inclusive scan is shown in Line
3. Using the plus binary operator, it computes a running sum
(prefix sum) of all elements up to and including the current ele-
ment in the input. Line 4 shows an exclusive scan. In con-
trast to inclusive scan, exclusive scan includes all ele-
ments of the input up to but not including the current element. An
inclusive scan that uses the maximum binary operator rather
than addition, and that scans the vector in reverse (using the rbegin
and rend iterators) is shown in Line 5. An example of a segmented
operation, inclusive scan by key, is shown in Line 6. This
takes an additional input vector (A) containing the segment descrip-
tors. The scan is computed independently in each segment, where
a segment is defined as a consecutive range of identical values in
A. Line 7 illustrates a sort by key, in which vector B is sorted,
and the elements of A are moved along with their corresponding B
value. The last two lines show the vectorized binary search oper-
ators. The lower bound (or upper bound) operator finds the
first (or last) index at which each element of B could be inserted
into the sorted vector A without violating the ordering.

5 ALGORITHMS

5.1 FOF Halo Finding
5.1.1 Parallel Sparse Connected Components
The pseudocode for a standard connected components algorithm for
sparse graphs based on [21, 1, 15] is shown in Listing 1. The basic
strategy is to create a pseudoforest defined by a function D which
maps each vertex to its parent. Initially, each vertex is its own par-
ent. We then iteratively attempt to graft trees onto smaller vertices

A 0 0 4 6 6 6
B 4 5 2 1 3 0

1) transform(B.begin(), B.end(), C.begin(), add constant(1))) ( g (), (), g (), _ ( ))
C 5 6 3 2 4 1

2) for_each(cnt_itr(0), cnt_itr(0)+2, double_it(B, C))
C 4       8      5      10

3) inclusive scan(B.begin(), B.end(), C.begin(), thrust::plus<int>())) _ ( g (), (), g (), p ())
C 4 9      11     12      15     15

4) exclusive_scan(B.begin(), B.end(), C.begin(), 0, thrust::plus<int>())
C 0 4 9      11 12     15

5) inclusive scan(B.rbegin(), B.rend(), C.rbegin(), thrust::max<int>())) _ ( g (), (), g (), ())
C 5 5 3 3 3       0

6) inclusive_scan_by_key(A.begin(), A.end(), B.begin(), C.begin())
C 4 9 2 1 4       4

7) sort by key(B.begin(), B.end(), A.begin())) _ y_ y( g (), (), g ())
B 0 1 2 3 4 5
A 6 6 4 6 0 0

8) lower_bound(A.begin(), A.end(), B.begin(), B.end(), C.begin())
C 2 3 2 2 2 0

9) upper_bound(A.begin(), A.end(), B.begin(), B.end(), C.begin())
C 3 3 2 2 2 2

Figure 1: Example data-parallel primitives used by our algorithms,
shown with Thrust pseudocode

of other trees, and then perform one level of pointer jumping on
each vertex to compress the depth. Once all vertices are in rooted
stars (i.e., trees with depth one or less), the algorithm terminates,
with D now defining a pseudoforest in which each connected com-
ponent corresponds to an independent tree. Assuming all edges or
vertices can be processed in parallel, each iteration takes constant
time. The standard algorithm includes an additional step each it-
eration in which rooted stars are grafted onto other trees (even if
the vertex is not smaller), which guarantees that the algorithm ter-
minates in O(log(n)) iterations, with n the number of vertices. In
practice, we generally omit this step, since we do not encounter the
worst-case input, and thus this step tends to result in a net slow-
down. This algorithm, which is essentially a parallel union-find,
has wide application beyond just halo analysis.

// Initialize each vertex to its own tree
for all vertices i

D(i):=i

while (true) {
// Process edges in parallel, grafting trees
// onto smaller vertices of other trees
for all (i,j) ∈ E pardo

if (D(i)=D(D(i)) and D(j)<D(i))
set D(D(i)):=D(j)

// Exit if all the vertices are in rooted stars
for all vertices i pardo

set star(i):=true
for all vertices i pardo

if (D(i) �= D(D(i)))
set star(i),star(D(i)),

star(D(D(i))):=false
for all vertices i pardo

set star(i):=star(D(i))
if (star(i) for all i) break

// Pointer jumping on each vertex
for all i pardo set D(i):=D(D(i))

}

Listing 1: Pseudocode for a standard sparse parallel connected com-
ponents algorithm based on [21, 1, 15]

If we define an edge to exist between two particles if and only if
the distance between them is less than the linking length, the con-
nected components are the FOF halos. Unfortunately, it could take
O(n2) time and O(n2) memory to directly compute and store all
edges. In practice, the graph would not be fully connected for these
N-body cosmology simulations, but particles may still have a large
number of “friends” (particles within a distance less than the linking
length), and an algorithm requiring storage proportional to n times
a large constant factor would not be practical on accelerators such



as GPUs, which have limited memory compared to the CPU. Our
algorithm makes use of space partitioning to efficiently compute the
edge list “on the fly” without ever storing it in memory.

5.1.2 Space Partitioning

If the domain is partitioned into bins with edge length equal to
the linking length, direct “friends” of a particle (i.e., particles with
which it may share an edge) can only exist in its own bin or one of
its 26 neighbor bins. Given a compact representation for each parti-
cle of all the particles in its neighbor bins, we can compute the edge
list on the fly, parallel processing the particles (vertices) rather than
edges. For each particle, we compute the distance to every particle
in its neighbor bins, to determine whether the distance is actually
less than the linking length (in which case an edge exists).

The goal of the binning algorithm is to use data-parallel prim-
itives to compute, for each particle, a compact representation of
which other particles are in its neighbor bins (including its own
bin). This approach has the advantage of requiring an amount of
memory that is proportional to the number of particles rather than
to the number of bins. Since the linking length is generally very
small relative to the domain size (the dimensions of the universe),
the number of bins (most of which are empty) is much larger than
the number of particles.

In order to find the particles in neighbor bins for a given parti-
cle, we need for all particles to be ordered by bin, and to have a
way to quickly find the range of indexes corresponding to the par-
ticles in a given bin. Therefore, we store the indexes of the first
and last particles in each neighbor bin for each particle. For n parti-
cles, this would require 27×2×n storage, which is much less than
the total number of bins. However, the memory requirement is fur-
ther reduced by taking advantage of the fact that, in this uniform
3D binning with standard consecutive numbering of the bins, the
27 neighbor bins (including its own bin) will be arranged in nine
sets of three contiguous bins. Thus, we only store indexes for nine
ranges within the vector of particles (which has been sorted by bin).
This is accomplished by computing a vector of the 9× n neighbor
bin ids, and then performing a lower bound vectorized binary
search into the sorted vector of each particle’s bin id in order to find
the start of the ranges of neighbor particles, and a upper bound
vectorized binary search in order to find the end of the ranges of
neighbor particles. Since all the particles in a bin will need indexes
for the same ranges, memory could be further reduced by saving
neighbor pointers once for each non-empty bin rather than for each
particle, although we do not currently use this potential optimiza-
tion. Nevertheless, we do eliminate ranges for which no friends of
the particle are found so that they are not checked again in subse-
quent iterations, using a Boolean flag vector.

This binning algorithm is illustrated for a simple 2D example
in Figure 2. The input is I, containing the particle ids, and their
corresponding X and Y coordinates. Line 1 computes into B the
bin id in which each particle is located. For example, particle 0 is
located in Bin 13. Line 2 sorts B and I by bin id. Thus, after the
sort, vector I contains all the particle ids, grouped by the id of the
bin in which they are located, in order of increasing bin id. Particle
2, which is in bin 7, is first, while Particle 1, in bin 18, is last.
Corresponding bin ids are in B. Due to how the bins are numbered
(consecutively across rows), the nine neighbor bins correspond to
three ranges of three consecutive bins. In lines 3 and 4, for each
particle id in I, we compute into R1 and R2 the ids of the first and
of the last bin, respectively, for each of these three ranges. For
example, particle 2 is in bin 7, so possible friends are located in
bins 1-3, 6-8, and 11-13. Finally, in lines 5 and 6, we then convert
these ranges of bin ids to ranges of indexes of particles in I, storing
these indexes in N1 and N2. For example, particles in bins 11-13
are located at indexes [1,4) in I: particles 3, 0, and 4. This mapping
of a bin id to an index where the particles in that bin start or end

is accomplished using vectorized binary searches (lower bound
and upper bound). For each value in R1 (or R2), it finds the first
(or last) index at which it could be inserted into the sorted B vector
without violating the ordering (see Section 4).

I         0        1        2        3        4
X       3.5      3.3      2.7      1.2      3.8
Y       2.5      3.6      1.2      2.6      2.9

1) For each particle, compute in which bin it is located
for_each(cnt_itr(0), cnt_itr(0)+n, compute_bins(X, Y, B))

B        13       18        7       11       13
2) Sort particles based on the bin in which they are located

sort_by_key(B.begin(), B.end(), zip(X, Y, I))
B         7       11       13       13       18
I         2        3        0        4        1         

3) For each particle, compute start of each range of neighbor bins
for_each(cnt_itr(0), cnt_itr(0)+n, compute_neighbor_range_start(B,R1))

R1   1  6 11  5 10 15  7 12 17 7 12 17 12 17 22
4) For each particle, compute end of each range of neighbor bins

for_each(cnt_itr(0), cnt_itr(0)+n, compute_neighbor_range_end(B,R2))
R2   3  8 13  7 12 17  9 14 19 9 14 19 14 19 24

5) Convert first bin in each range to first index of its particles in I
lower_bound(B.begin(), B.end(), R1.begin(), R1.end(), N1.begin())

N1   0  0  1  0  1  4  0 2 4 0  2  4  2  4  5
6) Convert last bin in each range to last index of its particles in I

upper_bound(B.begin(), B.end(), R2.begin(), R2.end(), N2.begin())
N2   0  1  4  1  2  4  1 4 5 1  4  5  4  5  5

Figure 2: Illustration of the binning algorithm on simple example 2D
input. The input is I, containing the particle ids, and their correspond-
ing X and Y coordinates. The output are vectors N1 and N2. For
each element in the input, there are three corresponding elements in
each output vector, which give the ranges of indexes in I for particles
in its neighbor bins. (N1 contains the first index of each range, and
N2 contains the last index of each range). The green, purple, and
brown shading of elements corresponding to selected bins go along
with the example explained in the text. See text for details.

The output are vectors N1 and N2, which contain the beginning
and ending of three ranges (nine in 3D) in the sorted particle vectors
for which each particle will need to search for its potential friends.
For example, Particle 0 is at index i=2 in the sorted I vector (Line 2).
We need to search for friends of Particle 0 only within the neighbor
bins, which are given by the ranges R1[3 · i] to R2[3 · i], R1[3 · i+1]
to R2[3 · i + 1], and R1[3 · i + 2] to R2[3 · i + 2]. In this case, with
i=2, this gives bins 7-9, 12-14, and 17-19. Elements corresponding
to these bins are shown in shades of green, purple, and brown, re-
spectively, in the figure. Note these bin ranges encompass the nine
bins surrounding Particle 0 in the figure. The values of N1 and N2
at these same indexes give the indexes of particles in the sorted vec-
tor I that correspond to these bin ranges. Note the end of the range
is exclusive. Thus, the particles in bins 7-9 can be found at I[N1[6]]
through I[N2[6]]: I[0] up to (but not including) I[1]. The particle at
I[0] is 2. Similarly, the particles in bins 12-14 are found at I[N1[7]]
through I[N2[7]]: Particles 0 and 4. The particles in bins 17-19
are found at I[N1[8]] through I[N2[8]]: Particle 1. We must then



explicitly check the distance between Particle 0 and each of these
four particles (three not including itself). In this simple example,
we have only avoided the need to check Particle 0 with one other
particle (Particle 3), but in a large real problem, only a very small
proportion of the total particles are likely to be within the neighbor
bins, given how small the bins are relative to the full domain.

5.1.3 Implementation and Analysis
The halo finding algorithm is implemented using data-parallel
Thrust primitives (such as for each, reduce, and sort) along
with custom functors. Binning allows us to compute the edges used
by the sparse connected components algorithm in O( f ) time per
particle (O(n · f ) total work), where f is the number of potential
friends (i.e., particles in neighboring bins). In the worst theoretical
case (all particles in the same bin), f = O(n). However, in this case,

there actually are m = O(n2) edges, so there is no way to compute

them all with less than O(n2) total work.
While this algorithm parallelizes well, and avoids the duplication

of particles in overload zones required when parallelizing the serial
algorithm by using multiple MPI ranks, it is not work optimal. With
n vertices and m edges, the parallel connected components algo-
rithm on which it is based performs log(n) iterations, each of which
requires O(n+m) operations, for a total work of O((n+m) log(n)).
A serial algorithm based on a depth-first or breadth-first search re-
quires only O(n+m) work. Work-optimal randomized parallel con-
nected components algorithms exist [7, 8], but involve explicit stor-
age and modification of the edge list. Since our parallel FOF halo
finder requires a factor of O(log(n)) extra work, it needs to run on
enough cores to offset this difference before yielding an advantage.

5.2 Center Finding
We have also implemented algorithms using PISTON/VTK-m to
find MBP and MCP centers for each halo. If both halos and their
centers are to be computed using the data-parallel algorithm, they
are most efficiently computed together, allowing them to share
some pre-processing (such as binning the particles, which is needed
for FOF halo finding and for MCP center finding, and transferring
data to and from the accelerator). However, the code is structured
such that our halo and center finders can be mixed and matched
with other algorithms, such as the original HACC halo and center
finders. Therefore, for example, one could compute halos using the
original code on the CPU but the centers on the GPU.

The potentials for all particles in a halo can be easily computed
in parallel using a for each which applies a functor that loops
over all particles in the halo to each element of the vector of parti-
cle ids. The index of the particle with the minimum potential can
then be found using a min element operator. This particle with
minimum potential is the MBP center.

If all particles are within a single vector (as would be the case
if FOF halos were computed using the algorithm in the previ-
ous section), the MBP centers for all halos can be computed in
parallel (rather than one halo at a time) using segmented vec-
tors, with the segments defined by the halo ids (and the vector
sorted according to halo id). A vector containing the index of
the first particle in each particle’s halo can be computed using
a min inclusive scan by key, with a counting iterator as
the input vector. Similarly, a vector containing the index of the
last particle in each particle’s halo can be computed using a re-
verse max inclusive scan by key. For each particle, the
functor for computing potentials then loops over the range de-
fined by these starting and ending indexes. The minimum po-
tential for each halo can be associated with each particle in the
halo by a “segmented min-distribute”, implemented in Thrust with
a min inclusive scan by key with the vector of potentials
as input, followed by a reverse min inclusive scan by key.
The index of the MBP center can then be associated with each
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D 0 0 2 0 2 0 0 2 0 0 0 2 0 0 2 0 0
1) Sort the particles based on their halo id in D

sort_by_key(D.begin(), D.end(), zip(I, X, Y)
D        0     0     0     0     0     0     0     0     0     0     0     0     2     2     2     2     2
I        0     1     3     5     6     8     9    10    12    13    15    16     2     4     7    11    14
2) Within each halo segment, find the minimum global index

inclusive_scan_by_key(D.begin(), D.end(), cnt_itr(0), H1.begin(), min)
H1 0 0 0 0 0 0 0 0 0 0 0 0    12    12    12    12    120 0 0 0 0 0 0 0 0 0 0 0
3) Enumerate the global indexes

sequence(H2.begin(), H2.end(), 0)
H2       0     1     2     3     4     5     6     7     8     9    10    11    12    13    14    15    16
4) Within each halo segment, find the maximum global index using a reverse max-scan

inclusive_scan_by_key(D.rbegin(), D.rend(), H2.rbegin(), H2.rbegin(), max)
H2      11    11    11    11    11    11    11    11    11    11    11    11    16    16    16    16    16
5) For each particle, compute its potential within its halo (using particles in the range given by H1 and H2)

for_each(cnt_itr(0), cnt_itr(0)+n, compute_potential(X, Y, H1, H2, P))
P    -4.01 -5.22 -5.77 -5.22 -4.01 -6.02 -5.83 -5.93 -4.84 -6.01 -4.83 -4.46 -2.91 -2.91 -4.00 -2.91 -2.91
6) Within each halo segment, find the minimum potential using a forward and then a reverse min-scan

inclusive_scan_by_key(D.begin(), D.end(), P.begin(), Pmin.begin(), min)
Pmin -4.01 -5.22 -5.77 -5.77 -5.77 -6.02 -6.02 -6.02 -6.02 -6.02 -6.02 -6.02 -2.91 -2.91 -4.00 -4.00 -4.00

inclusive_scan_by_key(D.rbegin(), D.rend(), Pmin.rbegin(), Pmin.rbegin(), min)
Pmin -6.02 -6.02 -6.02 -6.02 -6.02 -6.02 -6.02 -6.02 -6.02 -6.02 -6.02 -6.02 -4.00 -4.00 -4.00 -4.00 -4.00
7) For each particle, return its id if its potential (in P) is equal to the halo minimum (in Pmin)

transform(cnt_itr(0), cnt_itr(0)+n, C.begin(), equals_min_pot(I, P, Pmin)
C        0     0     0     0     0     8     0     0     0     0     0     0     0     0     7     0     0
8) Within each halo segment, find id of particle with min potential using a forward and then reverse max-scan

inclusive_scan_by_key(D.begin(), D.end(), C.begin(), C.begin(), max)
C        0     0     0     0     0     8     8     8     8     8     8     8     0     0     7     7     7

inclusive_scan_by_key(D.rbegin(), D.rend(), C.rbegin(), C.rbegin(), max)
C        8     8     8     8     8     8     8     8     8     8     8     8     7     7     7     7     7
9) Sort the particles back into their original order by id, along with their halo center id

sort_by_key(I.begin(), I.end(), zip(D, C))
I        0     1     2     3     4     5     6     7     8     9    10    11    12    13    14    15    16
C        8     8     7     8     7     8     8     7     8     8     8     7     8     8     7     8     8

Figure 3: Illustration of finding MBP centers for all halos in parallel
using segmented vectors, with simple example input. The input are
the particle ids (I), coordinates (X, Y), and halo id (D, found using the
halo finding algorithm). The output is a vector C containing for each
particle the id of the MBP center for its halo. See text for more details.

particle in the halo using a “segmented max-distribute”, imple-
mented using a max inclusive scan by key with a functor
that returns its index for a particle with a potential equaling the
minimum value and zero otherwise, followed by a reverse max
inclusive scan by key. The final result is a vector which
contains, for each particle, the index of the center particle of its
halo. The core of this algorithm, implemented using data-parallel
Thrust primitives, is illustrated with example input in Figure 3.

The number of “friends” for each particle can be easily counted
during any iteration through the virtual edge list in the FOF halo
algorithm, followed by a max reduce and a max transform
reduce, or segmented inclusive scan by keys, as with

MBP centers, to find the index of the particle with the most friends
in each halo (i.e., the MCP center). If only MCP centers, and not
the halos themselves, are to be found, the binning process must still
be completed as a pre-processing step in order to efficiently loop
through the potential friends of each particle.

5.3 Extensions to Halo and Center Finding Algorithms
The FOF halo finding algorithm described above may be general-
ized to a version of the DBSCAN algorithm. Just as when find-
ing MCP centers, the number of “friends” for each particle may be
counted during the first iteration through the virtual edge list, and
any particles with fewer than the specified number of friends can be
excluded in subsequent searches for edges, ensuring that they are
not included in any halo. While not strictly equivalent to the algo-
rithm described in [19], it also helps to avoid the problem of two
halos being combined into one through a thin line of particles.

Although it parallelizes very well, the MBP center finding al-
gorithm described above is still an O(n2) algorithm. However, we
have also implemented an alternative algorithm which avoids com-



puting potentials for every particle. In this algorithm, the potential
field is computed on a grid. The grid is superimposed over the
extents of the halo. The density is estimated on the grid by com-
puting the cell in which each particle lies (as in the binning proce-
dure used for FOF halo finding), sorting the particles by cell id, and
using upper bound to compute how many particles are in each
cell. Once we have the density, we can calculate the potential field
on the grid by solving the Poisson equation ∇2φ = ρ . The bound-
ary conditions for this problem are open, but we approximate the
solution using the boundary condition φ = 0 at ∂ (Ω). Because of
the boundary condition, we use the Discrete Sine Transformation
(DST) instead of the standard Fast Fourier Transform (FFT). Our
CUDA implementation uses Nvidia’s CUFFT library, which does
not support DST directly, so we implemented this by pre and post
processing the input as described in [2].

First, we extended the input N3 3D array to (2N + 2)3 with odd
symmetry in parallel, using a for each on a counting iterator for
each of the (2N + 2)3 elements of the output. Each real element
was converted into a complex number, and the complex 3D array
was passed to CUFFT. The imaginary part of the output are the
coefficients of the sine basis of the FFT which correspond to the
coefficients of the DST. We then extracted the “upper-left” 1/8 of
this 3D array (since the rest of the array is just high frequency alias
of this). We can optionally choose to scale the result so the property
DST−1(DST (x)) = x holds. Once we obtained the DST, we solved
the Poisson equation by performing a forward DST on the density
field to obtain the frequency domain, and then divided each coef-
ficient by the eigenvalues of the tensor. Finally, we performed an
inverse DST to get the potential of the equation.
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Figure 4: (A, left) Illustration of Fast Poisson Method for a simple 2D
example. (B, right) Visualization of halos found by the original HACC
algorithms (left) and our data-parallel algorithms (right), shown here
for a 10243 particle data set using 128 nodes on the Moonlight super-
computer. Each halo is represented by a point at its center, colored
based on its distance from the center of the domain.

The grid cell with minimum potential can then be found using
min element. The potential is then computed in parallel for all
particles located in a cell that is within a specified radius of the
minimum grid potential cell. All steps of this algorithm have been
implemented using data-parallelism. The total work for creating the
input density grid is O(n log(n)), where n is the number of particles.
The total work for solving the Poisson equation on the grid using
DST is O(g log(g)), where g is the grid resolution. In the final step,
potentials are computed for r particles within the search radius, for
a total work of O(r ·n). Assuming g and r are much less than n, this

is much less total work than the O(n2) algorithm.
While our tests have succesfully used this method to find the ex-

act MBP center within a small radius of the minimum potential grid
cell in the vast majority of cases, we have not yet proven bounds on
the grid resolution and search radius necessary to guarantee the op-
timal solution. Some halos, such as those with a small number of
particles or that are very un-relaxed (containing a lot of substruc-
ture or two or more large major components), can be more difficult
for this algorithm to find precisely. The method is illustrated for a
simple 2D example in Figure 4A.

6 RESULTS

We evaluated these algorithms in several scenarios on three differ-
ent machines. First, we ran a moderate-sized test problem (10243

particles) using the GPUs on the Moonlight supercomputer at Los
Alamos National Laboratory, using both one MPI rank per node and
16 MPI ranks per node. To demonstrate the portability of the data-
parallel algorithms, we ran a small test problem (2563 particles) on
an Intel Xeon Phi accelerator on a single node of the Stampede
system at the Texas Advanced Computing Center. We ran both
a moderate-sized test problem (10243 particles) and a very large
problem (81923 particles) on the GPUs of the Titan supercomputer
at Oak Ridge National Laboratory. Due to memory constraints, the
large simulation runs on Titan can only use one MPI rank per node,
making the speed-up by utilizing the GPU especially valuable. Fi-
nally, we evaluated the Poisson center-finding algorithm on a single
node of Moonlight with various sized halos.

6.1 Moonlight

The original CPU code and our new data-parallel code for halo and
center finding were compared on a 10243 particle data set, using
128 nodes on the Moonlight supercomputer at Los Alamos National
Laboratory, with 16 MPI processes per node. The original CPU
code was also tested with one MPI process per node. Each node has
a 16-core 2.6 GHz Intel Xeon E5-2670 CPU, 64 GB of RAM, and
two Nvidia Tesla M2090 GPUs. Due to memory constraints, access
to the GPUs in our version was serialized on each node between two
groups of eight processes each.
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Figure 5: (A, left) Timing results for FOF halo finding and MBP center
finding on Moonlight. (B, right) Timing results for FOF halo finding
and MCP center finding on Moonlight. Error bars show minimum and
maximum over three runs (but are often too small to be visible).

As shown in Figure 5A, the original CPU code using 16 MPI
ranks per node took 16 seconds to find halos and 647 seconds to
find MBP centers, for a total of 663 seconds. With only one MPI
rank per node, it took 43 and 1192 seconds, respectively, for a to-
tal of 1235 seconds. Our code took a total of 135 seconds to find
both the halos and their MBP centers, a factor of about 4.9 faster.
When finding MCP centers, as shown in Figure 5B, the original
CPU code with 16 ranks per node took 14 seconds, for a total of 30
seconds (41 seconds, for a total of 84 seconds, with one rank per
node), while our code took 12.2 seconds for halo finding and 0.5
seconds for MCP center finding, for a total of 12.7 seconds, about
2.5 times faster. The accuracy of the results was verified by per-
forming a diff on the FOF halo properties files produced by the two
codes, which outputs the id, total mass, number of particles, and
center for each halo. For this data set, 52,738 halos containing a
total of 325,065,528 particles were found by both codes. The out-
put halo ids, mass, and number of particles were identical for both
codes. For 37 of the 52,738 halos, the reported MBP centers were
very slightly different, but spot-checking a few of these indicated
that the two particles had essentially the same potential within the
resolution of the computation. For the MCP centers, about 10%
reported different centers, but it was verified that the two reported
centers each had the exact same number of “friends” and thus were
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Figure 6: (A, left) Timing results for FOF halo finding and MBP center finding on a single MIC node on Stampede. (B, middle left) Timing results
for FOF halo finding and MBP center finding with 10243 data set on Titan, with one process per node. (C, middle right) Timing results for FOF
halo finding and MBP center finding with 81923 data set on Titan, with one process per node. (D, right) Timing results for center finding on a
single node on Moonlight. Error bars show minimum and maximum over three runs (but are often too small to be visible).

equally correct. A simple ParaView visualization of halo centers
found by each method is shown in Figure 4B.

6.2 Stampede
For the tests on Moonlight and Titan, the data-parallel algorithms
were compiled to the Thrust CUDA backend. In order to demon-
strate the portability of the data-parallel algorithms, the same code
was compiled to the Thrust OpenMP backend (including our own
OpenMP implementation of scan) and run on a 2563 particle data
set on an Intel Xeon Phi SE10P (MIC) Coprocessor on a single
node of the Stampede system at the Texas Advanced Computing
Center. The Xeon Phi has 61 cores, capable of running up to four
threads each. The code was compiled using the Intel compiler, but
no attempt was made to manually optimize the OpenMP backend
specifically for the MIC architecture. Figure 6A shows the scaling
of the original algorithms with the number of MPI processes and of
the data-parallel algorithms with the number of OpenMP threads.
Since threads are more lightweight than processes, and because
using threads rather than processes avoids the need for additional
replication of points in the overload regions between processes, the
data-parallel algorithms can scale to more cores.

When only considering the FOF halo finding algorithm, how-
ever, our algorithm (46 seconds) performs better than the original
algorithm using one process (65 seconds), but does not surpass the
original algorithm with 60 processes (6.3 seconds). While our halo
finder using GPUs was able to outperform the original algorithm
using all 16 CPUS cores per node on Moonlight (12.1 vs. 16.1
seconds), the disadvantage that the parallel algorithm is not work-
optimal (O((n+m) log(n)) work compared to O(n+m) for the se-
rial algorithm) outweighs the advantage of avoiding extra overload
regions and heavier-weight processes. Nevertheless, the superior
performance of the parallel center finder yields an overall better
performance on the Xeon Phi. Since center-finding times tend to
dominate halo-finding times, the impact of the non-work optimal
halo-finding is masked in the overall performance results shown in
Figure 6A. It should also be noted that, the larger the halos, the
more time is spent in center finding compared to halo finding, and
thus the greater the advantage of the data-parallel algorithms for the
overall analysis pipeline.

6.3 Titan
Our next goal was to accelerate the analysis for a very large 81923

particle simulation on the Titan supercomputer at Oak Ridge Na-
tional Laboratory. Titan consists of 18,688 AMD 16-core Opteron
processors, each paired with an Nvidia Kepler GPU. For the Q Con-
tinuum run, half a trillion particles were evolved, and analysis was
to be performed at 100 time slices. Traditionally, with smaller sim-
ulations, analysis would take roughly the same amount of time as
the simulation itself. However, with the very large halos that form

in the Q Continuum simulation, the original CPU algorithms were
expected to take many days to compute MBP centers, while the
simulation itself required only a few hours. Because the memory
requirements increase with the number of MPI processes due to
overload regions, the HACC simulation with this data can only use
one MPI process per node, along with the associated GPU, given
the main memory available on Titan. (In other words, loading all
81923 particles plus all the extra copies in overload regions needed
when running with more than one rank per node would exceed the
total of about 260TB of memory available on Titan.) Furthermore,
HACC’s OpenCL physics kernels running on the GPUs could only
support one rank per node. This creates a significant bottleneck
for the original serial-per-process halo and center finding code, as
it essentially leaves 15 of 16 cores on each node idle. Thus, there
is an even greater potential for speed-up by utilizing the GPUs for
analysis than in the 16-process per node scenario reported above
on Moonlight. However, this configuration also results in a very
large number of particles per process (about 90 million). Due to
the memory requirements for binning the particles, the 6 GB GPU
memories cannot hold all of the data structures necessary for effi-
cient FOF halo finding at once. A long-term solution for this issue
would be to implement the algorithms using a streaming interface
that could compute results without ever having to hold all the data in
memory at once. A somewhat simpler but less elegant and less effi-
cient solution would be to re-partition the particles within a process
into multiple virtual processes (just as the global parallel halo finder
partitions points among real processes), and serialize access to the
GPU among these virtual processes. A third option was to utilize a
hybrid approach, in which the halos are computed on the CPU using
the original HACC code, but the centers are computed on the GPU
using PISTON. Our MBP center finding algorithm requires much
less memory than the halo finding algorithm (especially if centers
are found one halo at a time rather than all at once), but provides
the large majority of the speed-up, since MBP center finding takes
much longer than FOF halo finding with the original CPU code.

Using this hybrid implementation on a 10243 data set (output
from a simulation run) using 32 processors with one process per
node, the total time to compute FOF halos and find the MBP center
for each was about 30 minutes using only the original CPU code,
and about five minutes when using our code on the GPU to find
the MBP centers (Figure 6B). Distributing particles and finding the
FOF halos took essentially the same amount of time in both cases
(since the original CPU code was used for these operations in both
cases): about 115 seconds and 165 seconds, respectively. However,
the original CPU code spent 1524 seconds for MBP center finding,
while our code on the GPU spent only 21 seconds. This is about a
70x improvement for MBP center finding, and about a 6x improve-
ment for the total analysis computation (including distributing par-
ticles, FOF halo finding, and MBP center finding).



Finally, we ran the data-parallel algorithms on one early time
step and one relatively late time step from a large 81923 particle
simulation run. A timing break-down for the late time step (when
many halos have formed), using 16,384 nodes, each with a GPU,
is shown in Figure 6C. Running the original algorithm for this data
set was expected to be too expensive, so only the data-parallel algo-
rithms were run. The 10243 data set described above was intended
to be representative of the large problem, scaled down to 32 nodes,
so the relative performance would be expected to be similar.

6.4 Poisson Solver
Our Poisson solver center finder was compared to our O(N2) MBP
center finder and to the original HACC CPU MBP center finder
on one node of Moonlight. Both of our implementations utilized
the GPU. As shown in Figure 6D, the extra overhead involved in
computing the potential field on the grid resulted in slower perfor-
mance than our other MBP center finder for small halos. However,
for larger halos, the reduction in the number of particles for which a
potential has to be explicitly computed far outweighs this overhead,
resulting in much faster performance. For each test case, a grid size
of 633 and a search radius of two cells in each dimension were used,
and the correct MBP center was found by all three algorithms.

7 CONCLUSION

We have presented data-parallel algorithms for FOF halo finding,
including a version of DBSCAN; most connected particle center
finding; and most bound particle center finding, including a grid-
based approximation method which reduces the total number of
operations. These algorithms have been implemented using the
PISTON component of VTK-m, a library of portable data-parallel
visualization and analysis operators, utilizing Nvidia’s Thrust li-
brary. The exact same code has been compiled and run on dif-
ferent multi-core and many-core architectures, including GPUs us-
ing CUDA and Xeon Phis using OpenMP. These data-parallel al-
gorithms have allowed the HACC analysis operators to exploit the
parallelism available on shared-memory accelerators, resulting in
large speed-ups, especially for MBP center finding, and in contexts
in which only one MPI rank per node may be run. This has enabled
halo analysis to be performed on a 81923 particle data set for which
analysis using traditional CPU algorithms was not feasible.

There are several potential directions for future work based on
the limitations of our current approach. First, the analysis re-
sults presented here were all computed in post-processing. In-situ
analysis is a promising alternative, although it could present load-
balancing problems, since some halos are much larger than others.
Next, while the Poisson-based center finder is much faster than the
MBP center definition for large halos, the latter is currently bet-
ter vetted by the domain scientists (which is why it was used for
the large runs presented in this paper). Thus, there is still a need
to sufficiently vet a faster center finder (such as the Poisson-based
method) as we move to even larger simulations. Finally, as dis-
cussed with regards to the Stampede results, a non-work optimal
parallel algorithm such as our FOF halo finder will not necessarily
be faster than running a serial algorithm with domain decomposi-
tion across multiple MPI ranks when the number of available cores
is relatively small. Therefore, better, work-optimal algorithms (per-
haps using randomization) could be beneficial.
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