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Abstract—Petascale simulations compute at resolutions rang-
ing into billions of cells and write terabytes of data for visual-
ization and analysis. Interactive visualization of this time series
is a desired step before starting a new run. The I/O subsystem
and associated network often are a significant impediment to
interactive visualization of time-varying data; as they are not
configured or provisioned to provide necessary I/O read rates.

In this paper, we propose a new I/O library for visualization
applications: VisIO. Visualization applications commonly use N-
to-N reads within their parallel enabled readers which provides
an incentive for a shared-nothing approach to I/O, similar to
other data-intensive approaches such as Hadoop. However, un-
like other data-intensive applications, visualization requires: (1)
interactive performance for large data volumes, (2) compatibility
with MPI and POSIX file system semantics for compatibility with
existing infrastructure, and (3) use of existing file formats and
their stipulated data partitioning rules.

VisIO, provides a mechanism for using a non-POSIX dis-
tributed file system to provide linear scaling of I/O bandwidth. In
addition, we introduce a novel scheduling algorithm that helps to
co-locate visualization processes on nodes with the requested data.
Testing using VisIO integrated into ParaView was conducted
using the Hadoop Distributed File System (HDFS) on TACC’s
Longhorn cluster. A representative dataset, VPIC, across 128
nodes showed a 64.4% read performance improvement compared
to the provided Lustre installation. Also tested, was a dataset
representing a global ocean salinity simulation that showed a
51.4% improvement in read performance over Lustre when using
our VisIO system. VisIO, provides powerful high-performance
I/O services to visualization applications, allowing for interactive
performance with ultra-scale, time-series data.

Keywords-Data Intensive Scientific Computing; Scientific Visu-
alization; Parallel Computing; Distributed Computing; I/O

I. INTRODUCTION

Scientific visualization applications form a core application
area within the umbrella of Data-Intensive Computing. These
applications have come into prominence in recent years as a
direct result of the transition into Petascale class simulations of
real-world phenomena as well as in-field deployment of high-
resolution sensors. These simulations include nuclear fusion
research [1], and cosmology simulations of dark matter theo-
ries [2]. Likewise, the deployment of ultra-fast gene sequenc-
ing systems [3] and the Large Hadron Collider [4] exemplify
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the growth and dependence on high-resolution sensors. The
scientific demand for transforming these Tera/Petabytes of
produced data into meaningful insight has forced these visu-
alization applications to compute interactively while keeping
pace with the volumes of produced data [5].

The I/O demands of visualization applications were high-
lighted in a recent work by Childs, et. al. [6] which demon-
strated visualization performance at scale on six supercomput-
ers across the United States Department of Energy complex. A
key observation made was that while the actual visualization
algorithm and rendering times were sufficiently fast for in-
teractive performance even with ultra-scale datasets, I/O time
dwarfed these operations by an order of magnitude and in one
test by almost two orders of magnitude. One effort to mitigate
this effect was proposed by Peterka and Ross, et. al. [7], [8]
through the use of MPI-IO optimizations and reordering of
data within the input files to allow for contiguous reads of
needed data. This software based approach, however, is still
limited by the scalability of the underlying storage hardware
and associated network to handle ever larger datasets.

These visualization applications represent a unique category
of applications that perform sophisticated calculation routines
but also are data-intensive in that they have to ingest data in the
Tera/Petabyte range. These applications are tough to properly
serve on both traditional computational-intensive platforms as
well as on data-intensive platforms. Traditional computation-
ally intensive platforms are I/O starved [9] and leave these
applications waiting for long periods of time while data is
read in from a central parallel file system. On the other hand,
these applications would struggle on a data-intensive platform
due to the lack of high performance CPUs and/or GPUs on
which to run the needed calculations.

Therefore, we propose a hybrid approach that can properly
support these visualization applications. This approach calls
for the use of a traditional High Performance Computing
(HPC) cluster with mid to high end CPUs and optional GPU
hardware. However, we forgo a traditional centralized parallel
file system in favor of a distributed file system with local
hard drives attached directly to the individual cluster nodes.
Specifically, we deploy the Hadoop Distributed File System
(HDFS) [10] in our tests and propose a library, VisIO, which



allows for these MPI-based applications to interpret the data
locality information exposed by the file system and appropri-
ately schedule computation on nodes locally containing the
needed data for that MPI rank.

Motivating this architectural proposal are the limitations
inherent in the scalability of todays parallel file systems that
make it difficult to handle data-intensive workloads without
bottleneck. These centralized systems rely on a single or
handful of network links that are statically constructed during
installation and are responsible for transferring data to and
from the cluster [11]. These links do not scale with the given
problem size and while adequate for jobs that are below the
maximum available bandwidth, quickly detriment the applica-
tion with long latencies and slow reads when oversubscribed.
Conversely, a distributed file system like HDFS, constructed
from locally attached disks, can scale with the problem size
and node count as needed. Thus, HDFS is able to sidestep the
network bottlenecks inherent in todays parallel file systems
and allow it to scale from Petascale datasets up towards
Exascale datasets. Additionally, visualization applications tend
to exhibit workloads where N nodes access N files which
differentiates from commonly seen workloads where N nodes
access 1 file in simulation environments that parallel file
systems are designed for [12], [13].

Our contribution, therefore, focuses on laying out the archi-
tectural details needed to both define the VisIO library as well
as the system details needed to use a distributed file system
effectively for this class of applications. Specifically, we use
Kitware’s ParaView visualization package and the Hadoop
Distributed File System (HDFS) on the Texas Advanced
Computing Center’s (TACC) Longhorn visualization cluster
to prove the potential of this system. This can be summarized
as:

• Development of the VisIO library for use of distributed
file systems within visualization applications working on
current ultra-scale and future exascale datasets.

• Development of a new method to leverage file system data
locality within an MPI-based program to intelligently co-
locate computation and data.

Validation of this concept was done using two representative
datasets: the VPIC plasma physics simulation, and an ocean
salinity simulation. We experienced between a 50 and 65%
improvement in read times for these datasets using VisIO
compared to the the current I/O methods. In addition, these
performance gains were made while successfully keeping
approximately 92% of the data local to the node requiring
it. Even though testing was taken to 128 nodes on one of the
larger available visualization clusters, we believe that coming
larger visualization clusters would yield even better improve-
ments in I/O performance due to increased node count. Thus,
we believe that our technique will provide an opportunity to
visualize these ever increasing datasets while meeting user
expectations for interactivity, currently set at 10 seconds or
less for system response [14], [15].

We present the rest of this paper by first detailing some
background information in Section II. Section III details the

full design of the VisIO library. Section IV discusses the exper-
imental methodology used to prove this system’s effectiveness
and analyzes the collected results. Finally, Section V examines
related works while Section VI discusses our conclusions.

II. BACKGROUND

A. ParaView and the VTK Streaming Demand Driven Pipeline

The core tenant of the design of ParaView is its streaming
demand driven pipeline which dictates the data-flow through
the individual modules that transform raw data into rendered
images. The interworking of the demand driven pipeline is
shown in Figure 1. In this example pipeline, the user requests
a time step to be loaded and displayed on screen in addition to
needed filters to process the data. The client facing GUI reports
the request to the executive which sets the parameters for this
request on the pipeline for each node and then requests that the
renderers produce the picture. Since the renderer does not have
any input data, it requests the data range to be displayed from
the filter sequence connected to its input port. Likewise, the
filters do not have the data needed to run the filer against and
finally report the requested data range to the reader to fetch
the needed information from the file system. Once retrieved,
the data is propagated back down the pipeline, following the
arrows, from the reader to the filter sequence and finally to
the renderer for display to the user’s screen. This is a simple
example of the pipeline in action but can be expanded to a
large network of readers, filters, and renderers across numerous
nodes to perform this operation in parallel.

Fig. 1. VTK/ParaView visualization demand driven pipeline. In this version
of the pipeline, a globally accessible network attached file system feeds input
data files to nodes as they are requested by the pipeline. The demand driven
pipeline then proceeds to process and render the input files producing the final
composited image.

This layering approach allows for complete modularity
within the visualization process. The pipeline enforces a stan-
dardized input and output port specification and an executive
performs the needed operations to call various methods within
the modules at the correct time to keep data moving through
the pipeline. This modularity allows for an arbitrary set of
readers to interact with an arbitrary set of filters which in turn
work with an arbitrary set of rendering engines. Thus, it is
possible to swap out components as needed to gain desired
results within the visualization pipeline. In our case, the stock
version of the reader for MultiBlock data files will be replaced
with a custom version designed to use the VisIO system and
associated distributed file system. This swap process does not
impact any other piece of the pipeline thus allowing continued



Fig. 2. Proposed Visualization Pipeline with VisIO enabled reader. (a) Each node is responsible for a non-overlapping sub-extent denoting a piece of the
total picture to render. Each node has an independent visualization pipeline which only coordinates with the other nodes for final compositing and in special
cases for some filters. Each node is scheduled a single input file out of the set based on replica placement. (b) The VisIO enabled reader, within the pipeline,
uses two new modules to access the distributed file system and intelligently schedule read operations based on data locality.

use of existing filters and rendering engines without additional
modification being needed.

B. The Hadoop Distributed File System
The Hadoop Distributed File System (HDFS) is the open

source community’s response to the Google File System (GFS)
for use with MapReduce style workloads. HDFS is designed
with the idea that it is quicker to ship the computational
executables to the stored data and process in-situ rather than to
pull the needed data from storage and send it via a network to
the compute node that has the executable loaded. Thus, HDFS
calls for local hard drives to be installed in each compute node
(known as a DataNode) and distributes stored data, broken
down into chunks, across the nodes using a pseudo-random
placement system. To combat hard drive failure rates, HDFS
calls for these chunks to be replicated, by default, a total of 3
times within the cluster. A chunk, by default, represents up to
64MB of a file - a decision that reflects HDFS’s design goal
of handling large files. All of the metadata associated with
mapping a given chunk to a DataNode is contained within
a memory based map loaded on the NameNode (HDFS’s
metadata server) and backed up to the Secondary NameNode.
Thus, this distributed file system presents the applications with
a chunk oriented view of the files stored, with local access to
a given chunk from three of the nodes within a cluster.

While originally designed for use with the MapReduce
framework, HDFS can be interfaced with traditional parallel
programs (including those based on MPI) via its libHDFS
library for C/C++ based programs. By using libHDFS, a
client program is able to make connections to the HDFS’s
NameNode, and request locality information from the file
system for a given chunk (specified by a file name, offset
within the file, and length of the request). The NameNode
will respond to the client with a listing of the DataNodes (the
actual storage locations for the chunks in question) where the
requested chunks are stored. Reads requested from clients that
are executing on nodes with locally stored chunks can deliver
data directly to the application, bypassing the network, and
improving I/O performance. Based on this information, the
application can make decisions on where to execute a given
piece of code.

III. DESIGN AND IMPLEMENTATION OF VISIO

A. Design of a Distributed File System Enabled Reader

As discussed, currently ParaView relies on an I/O model
that is represented in Figure 1 and calls for a centralized
parallel file system to service data requests for the cluster.
Based on the foundations set forth above, a move towards
the I/O model shown in Figure 2 is desired to improve I/O
performance for current and next generation datasets being
produced. This new model calls for ParaView to be told which
files are available locally via the Distributed File System (DFS)
and assign processing responsibility for that data to the given
node. Implementation of this idea requires a rework of the
ParaView reader modules within the visualization pipeline.

Our VisIO enabled reader for ParaView is currently de-
signed to operate on VTK MultiBlock files to allow for flexi-
bility in the underlying data type (structured or unstructured).
MultiBlock files are self-describing with XML headers and
are composed of an index file with a “.vtmb” extension. Data
files, one per process in the group that wrote the original
data, are stored as raw binary representing a given type of
data (image, rectilinear grid, etc.). As such, when placed on
the target DFS, HDFS, the index file is replicated equal to
the number of nodes in the cluster to enable all nodes rapid
access to the needed metadata about the data to be visualized.
The data files are loaded with a standard replication factor
of 3 and the chunk size specified such that the entire data
file fits within a single chunk. This last requirement of fitting
the entire data file into a single chunk is done to ensure that
each pipeline is assigned a single, contiguous (in terms of the
contained extents) work unit. This allows for easier scheduling
of the data to a pipeline while improving performance by not
requiring seeking between multiple chunk locations on the
hard drive.

One key issue that had to be addressed is interfacing
ParaView’s POSIX view of the I/O system with HDFS’s
non-POSIX compliant access methods. The primary reader
code invoked within the VTKOpenFile() method handles this
translation. This code starts by intercepting the requested file
name from the pipeline and if the request is for a “.vtmb”
index file, the reader calls the assignNodes() method to execute



the scheduling algorithm, detailed in the next section, on the
group of data files represented by the given index file. This
schedule is computed on the first rank within the MPI process
group and scattered to all nodes within the group for use to
determine which node reads which data file. The remainder
of the code within the VTKOpenFile() method is outlined in
Algorithm 1. This code checks if the file exists on the HDFS
as claimed and then proceeds to get information about the file,
particularly the file’s size for use by the actual read command,
similar to what is done with a POSIX stat() call. A character
buffer is allocated to hold the file’s binary contents and calls
are made to the HDFS to open and then read the entire data
file into the character buffer. This buffer is then converted to
an STL istringstream so that the remainder of the reader code
can be used unchanged as it is expecting a variable of type
ifstream from this method. This conversion to an istringstream
is the key to allowing the rest of the existing code, which
is expecting a POSIX friendly access to the file, to continue
working without modification. Finally, the HDFS handles are
closed and the allocated memory reclaimed prior to handing
the istringstream off to the rest of the reader infrastructure to
be parsed and converted into VTK data structures for use by
the rest of the visualization pipeline.

Algorithm 1 VTK MultiBlock Reader
Input: File name to open.
Output: istringstream with requested file for XML parsing.
Steps:

1: Call hdfsExists to check for existence of file.
2: if File Exists == FALSE then
3: Return error to pipeline and exit method.
4: end if
5: Call hdfsGetPathInfo to get file statistics.
6: →Store file’s chunk size.
7: Allocate a character buffer the size of the file’s chunk.
8: Call hdfsOpenFile to get a handle to the file.
9: Call hdfsPread to read the chunk from beginning to end

into the character buffer.
10: Copy the character buffer to an STL string.
11: Assign the STL String to an istringstream
12: Set the istringstream to be pointed to by the reader’s

stream pointer for use by the XML parser.
13: Call hdfsCloseFile to close file handle and free memory

allocations for the character buffer.

B. Node Assignment

The key to gaining optimal read performance when using
HDFS is to assign computational processes such that the data
they need is local to the node’s hard drive. This avoids the need
to remotely pull data from hard drives on other nodes which
themselves are tasked with processing another subset of the
data. However, this scheduling of computational tasks to nodes
needs to be done with consideration of HDFS’s placement
algorithm.

As previously mentioned, HDFS uses a pseudo-random
placement algorithm to store chunks of data. Thus, it is pos-
sible to have data unevenly distributed on the cluster leaving
a subset of nodes with proportionally more data than other
nodes that are available. As such, we define a metric, scarcity,
as the number of available nodes which can serve a file that are
currently not allocated to a computational task. Through use of
this metric, we devised an assignment algorithm that schedules
the scarcest files first before handling files that have higher
levels of availability. Any computational tasks that could not
be assigned to a node containing a local copy of the needed
data are directly paired with the remaining nodes with the
expectation that the needed data for this small percentage of
tasks will be pulled over the cluster network. The number of
files that must request data over the network is tracked in our
testing and evaluated in section IV.D.

In comparison, a naive implementation of the assignment
algorithm, using a first-in, first-out implementation on a list of
files to be scheduled, would have a higher potential to leave
files scheduled to non-optimal nodes without local copies of
the needed data. This is because nodes that can be used to
service files that are scarce in the cluster are likely to be
assigned to process another eligible file on that node. Thus the
optimal solution from this naive algorithm would be entirely
dependent on the ordering of the input lists.

To achieve scheduling via scarcity, we implement a version
of the stable marriage algorithm [16] as shown in Algorithm 2.
We select the next file to match to a node based on the number
of nodes available at the start of the iteration to service that
file - its scarcity value. However, in the original algorithm, the
members of each set to be matched amongst have a weighting
system to determine preferability to a given potential match.
Since there is no preference between any node containing a
replica of the original data, we simply match the file with
the first available node within the set of nodes containing the
file. Thus, the weighting values from the original algorithm
are reduced to a “1” or “0” for a file’s preference for a node
based on if the node has the data or not.

C. HDFS Use Considerations

To achieve the best possible performance from the HDFS,
a few considerations had to be taken into account. First,
should the file size exceed the configured chunk size for the
HDFS instance (64 MB by default), the file will be broken
up into multiple chunks with each chunk being replicated
independently of the other related chunks. However, if a
process only has a fraction of the overall assigned piece local
and the other parts must be pulled from the network, the
locality performance advantage disappears due to the network
overhead and possible congestion at the nodes the chunks
were requested from. Thus, the chunk size for the file system
must be set to be larger than the largest data file present.
This ensures that a process has all of the needed data for its
assigned extents locally available. Additionally, we also size
the data files such that each node only has to handle a single
piece of the entire dataset for a given time step. This prevents



Algorithm 2 Node Assignment Algorithm
Input:

• A set C of nodes available.
• A set F denoting all files making up a time step.
• A list R of tuples, < node, file >, denoting where each

file and its replicas are stored. There may be more than
one instance of a given node or file within R.

Output:
• A list A of tuples, < node, file >, denoting which file

has been assigned to a given node. The values node and
file may only be used once in A.

Steps:
1: while an instance: f

⋂
R 6= 0 exists where f ∈ F do

2: Find f with the smallest number of occurances in R.
3: c = first node in set f

⋂
R and c ∈ C.

4: Ac = f
5: Remove c from R.
6: Remove f from R.
7: end while
8: for all files f that have not been assigned do
9: Find first Ac == NULL

10: Set Ac = f
11: end for

costly context switches between multiple processes on a node
to handle multiple pieces as well as prevents even costlier
seeks on the hard drive to service multiple chunk requests to
the HDFS.

Finally, we also override the default replication of 3 times
for the metadata files (one per time step, “.vtmb” extension)
and replicate these files n ways where n is the number of
DataNodes in the job allocation. This mitigates an issue where
every ParaView process at once tries to access the metadata file
for the time step at the beginning of the time step. A hotspot
would occur within the cluster amongst the three nodes storing
the metadata file if the defaults were left as is. A future version
of the reader could be updated to have a node containing
the metadata file locally read in the file and broadcast it to
the remaining nodes. This would be an acceptable solution
considering the metadata file is usually tiny (a few hundred
kilobytes) compared to a data file.

D. Fault Tolerance

The notion of being able to run this system at scale brings
the issue of fault tolerance to the forefront. Traditionally, if the
file system were to fail, the entire ParaView application would
either crash or would render incorrect results (missing pieces
of the image for example) depending on the severity of the
failure. However, when using HDFS, the loss of a DataNode
process or its underlying storage infrastructure poses no threat
to the application or the integrity of the rendered results. Due
to HDFS’s replication system, a reader in this situation can
still request the data on the failed node and the HDFS will
deliver the requested chunk from one of the replica nodes. So,

while a performance hit will be taken for the remote transfer
of the data, ParaView can still continue to run and still produce
correctly rendered results. In comparison, parallel file systems
rely on hardware level resiliency measures such as RAID and
hot spares to handle faults. While providing a level of fault
tolerance, this mechanism does not cover issues such as an
entire RAID group or Storage Area Network (SAN) volume
going offline. Additionally, RAID rebuilds can slow down
I/O operations to any file on a RAID group while transfer
of a replica from another node in the HDFS only impacts
performance on the requesting and the servicing node.

IV. TEST AND VALIDATION

A. Test Cluster Setup

Testing of our HDFS enabled ParaView reader was con-
ducted at the Texas Advanced Computing Center (TACC) on
their Longhorn visualization cluster [17]. This system consists
of 256 total nodes comprised of Dell PowerEdge R610 (240
nodes) and R710 (16 nodes) servers with dual Intel Nehalem
Xeon E5540 processors. Each node has either 48GB (R610)
or 144GB (R710) of RAM and all nodes have a 73GB Seagate
Savvio 15K.2 local hard drive (model: ST973452SS) [18]. Due
to the number of nodes needed, only the PowerEdge R610
nodes were used in testing. The node interconnect is Mellanox
QDR InfiniBand and has interconnections to a 210TB Lustre
parallel file system. All nodes were running CentOS 5.4 at the
time of testing.

Testing was conducted using ParaView 3.8.0 and Hadoop
version 0.20.2. Additionally, Hadoop’s configuration was kept
as close to default as possible to eliminate unfair advantages
given to Hadoop via tuning that would not be possible to
provide to Lustre. TACC’s storage infrastructure was running
version 1.8.3 of Lustre. Lustre was left to its defaults of using
a stripe count of four and stripe size of 1 MB. The Mesa
3D graphics library, version 7.6.1, was used for off-screen
rendering by ParaView. Finally, the supplied MVAPICH2
version 1.4.1 MPI library was used to enable access to the
IB interconnect within the cluster.

It should also be noted that testing was setup such that
reported results are based off of the performance ParaView
sees from the given file system. Time taken to load the HDFS
instance from archive is not counted nor is the time to transfer
data from archive to Lustre for testing. This data migration
issue is outside of the scope of this paper and treated as a
cost inherent in working with a system where simulations or
data producing sensors are not internal to the cluster running
the visualization application.

B. Test Datasets

1) VPIC - Plasma Physics Simulation: This data set is the
result of a Magnetic Reconnection experiment run using VPIC
(a Los Alamos National Laboratory developed Particle-In-Cell
code) [19] that was run during the LANL Roadrunner Open
Science Runs. This data set was produced on a full system
run on Roadrunner and represents approximately 4.68 TB of
raw data. Due to the need to move this data set to the test



system, from LANL, for our experiments, a subset of this
data was selected, consisting of just the magnetic field vector,
and converted to ParaView’s MultiBlock format. It should be
noted that the data was written out in “append” mode to allow
for the least amount of time to be spent on parsing of the data
as binary data in this format can be directly read into memory
by the ParaView readers. Additionally, of the total 342 time
steps, 20 were selected (steps 0 through 190 in increments of
ten). As a result, our test set was approximately 135 GB in
total size and 6.9 GB per time step.

Fig. 3. Representative images of the datasets tested. The image on the left is
from the Los Alamos National Laboratory’s VPIC Plasma Physics simulation
of magnetic reconnection. The image on the right is from the Los Alamos
National Laboratory’s Ocean Modeling Simulation showing ocean salinity.

2) Ocean Salinity - Ocean Simulation: The ocean salinity
data set was generated by LANL’s Climate, Ocean and Sea
Ice Modeling project [20]. The model this data represents is
a time series of the world’s ocean salinity from surface to
ocean floor ranging from February 2001 to January 2004. This
represents 36 total time steps, one per month in the given
range. Again, due to constraints on moving data from LANL to
our test cluster at TACC, only one variable worth of files were
moved. Once located on the test cluster, the data files were pre-
processed to clone the original variable ten times to match the
original number of variables tracked by the simulation. The
final VTK MultiBlock files, containing the data in rectilinear
grid format, averaged 25 GB per time step. Thus, the entire
data set, across all time steps, encompassed 887 GB worth of
data.

C. Validation of VisIO under Simulated Workload

Before implementing a VisIO compatible reader, a bench-
mark was performed with a similar workload as the proposed
reader to validate that HDFS would be capable of reading with
the bandwidth needed for use by ParaView. The benchmark
consisted of the same sequence of I/O calls as the reader would
make but executed against dummy files. These dummy files
were setup such that each node in the test would be given a
unique file that was 1 GB in size, thus making this a weak
scaling test. Node count was increased from 1 to 128 nodes, in
powers of 2, for testing. The benchmark would then proceed
to have each of the nodes open and read into memory the
contents of its assigned file with the process being timed. The
results of this test are shown in Figure 4.

The file systems tested included the Lustre parallel file
system, and HDFS in two different configurations. The Lustre
installation is globally shared amongst the nodes in the cluster

and all test files were stored on the same shared volume. The
HDFS variant 1 test was setup such that the HDFS chunk
size was equivalent to the file size so that the file would not
be split into chunks (and placed on various nodes) while the
replication factor was set to equal the number of nodes in the
cluster. This test represents an ideal case where all of the file is
present on a given node that the MPI job could need it on. The
variant 2 test used the HDFS defaults where the chunk size
was set to 64 MB and the replication factor set to 3. This test
represents the expected performance of HDFS without tuning
and with blocks transfered over the network to reassemble
the file for use by the MPI program. Finally, we plot the
Max Theoretical Hard Drive Bandwidth to show the aggregate
bandwidth possible from the given number of raw hard drives
based on the maximum quoted data sheet bandwidth [18] for
transferring data from the platter to the disk buffer. This sets
the maximum upper threshold theoretically possible and allows
for comparison of the efficiency of HDFS.

Two key observations can be made from these results that
are important considering the nature of the application and
its workload. First, it can be seen that both HDFS tests
follow the same linear growth trend as the theoretical hard
drive bandwidth but at a scaled rate. This linear growth in
available bandwidth as the number of nodes increases indicates
that HDFS could be used to scale I/O capacity on demand
as larger datasets are presented to the visualization system.
Second, it can be seen that Lustre, while able to produce
considerable bandwidth, peaks in its ability to deliver data
at 32 simultaneous clients and begins falling off as the node
count continues to increase. This is due to Lustre having a
finite network connection in which to serve data to the cluster
that saturates and then hampers read performance once this
saturation point has been reached. This behavior is not scalable
as dataset size increases or more nodes are added to the cluster
and limits Lustre’s ability to deliver data on demand in a
visualization style workload. Thus these results motivate our
exploration of a VisIO enabled reader.

D. Testing of ParaView using VisIO Reader

1) Test Setup: Once it was proven that HDFS could provide
the needed read bandwidth to sustain ParaView, the VisIO
system was implemented per the discussion in Section III.
Testing was conducted such that ParaView would read and
process a complete time series for a given dataset and report
the read times for every file opened for processing. A python
batch script was written to setup the visualization environment
and needed filters to create a reproducible test. The script then
instructed ParaView to iterate through each of the time steps
and produce a JPEG image of the rendered screens. This script
was submitted to the ParaView server via the provided pvbatch
utility to produce a test run on a given node count with the
desired file system.

For testing, ParaView with the test script was run on 16,
32, 64, and 128 nodes on TACC’s Longhorn cluster. 16 nodes
was selected as the minimum number of nodes to test on due
to the need for enough aggregate hard drive space to store



0.00 

5,000.00 

10,000.00 

15,000.00 

20,000.00 

25,000.00 

0  20  40  60  80  100  120  140 

A
gg
re
ga
te
 B
an

dw
id
th
 (M

B/
se
c)
 

Number of Nodes 

I/O Performance Benchmark on Longhorn @ TACC ‐  
Weak Scaling Performance 

Lustre  HDFS (Variant 1)  HDFS (Variant 2)  Max Theore@cal HD Bandwidth 

Fig. 4. Benchmark test of Lustre and two HDFS varients showing motivation for persuing a VisIO enabled reader for ParaView. Variant 1 tests performance
when all files are local to the node requesting them while variant 2 represents the impact of chunking the files and replicating 3-ways thus causing network
transfers between the DataNodes. Maximum theoretical hard drive bandwidth is also plotted for comparison to the HDFS results. The key observation from
these results is that HDFS scales linearly for a visualization workload while Lustre peaks in its ability to deliver data and then tapers off in bandwidth as the
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the datasets and their replicas. The largest value, 128 nodes,
was chosen as it was the largest number of nodes a single
user would be allowed to acquire in a job allocation on a
regular basis without needing intervention from the system
administrators.

The provided Lustre instance was directly accessed and only
the number of clients accessing it was increased with each
test set. HDFS was run such that the number of DataNodes
was equal to the number of ParaView server nodes thus
allowing the file system to scale with allocation size. Test
results reported for both file systems represent the average read
performance, per file, seen over each file opened for processing
and across three retests for a given node count. In reporting
average times, we can present a fairer picture of what the
user will see over time when using the system rather than
reporting maximum read times which show the worst case for
a particular run as well as highlighting system noise induced
variability.

HDFS was tested in two configurations: with and without
the locality awareness algorithm activated. Each HDFS variant
was configured slightly different to produce a fair test based
on how the file system was going to be used. Testing of HDFS
without the locality awareness was done by directly loading
HDFS with the test data files using the defaults of a 64 MB
chunk size and three way replication. The “.vtmb” index files
were replicated by the number of nodes in the cluster so that
each node could directly look up the metadata for the dataset
to be visualized without waiting for a network transfer (per
section III.C). For the HDFS test with locality, test files were
loaded into the HDFS exactly as described in section III.C -

using a chunk size equal to file size and three way replication.

2) Scalability of VisIO Reader: The central advantage of
leveraging HDFS rather than a central parallel file system
is the promised ability to scale as needed to accommodate
larger I/O demands. Proving this called for a strong scaling
test where a given real simulation dataset was processed by
ParaView with increasing node counts from 16 to 128 nodes
(in powers of two) using the VisIO based reader (with and
without the locality algorithm). The results were compared to
the baseline Lustre installation using the same node count.
The VPIC dataset was chosen due to its size which permitted
scaling down to 16 nodes, with the data set fitting into the
HDFS, while also allowing scaling to 128 nodes with a non-
trivial per node file size.

Similar to the weak scaled synthetic benchmark, previously
discussed, the strong scaling test run with ParaView showed
that the VisIO enabled reader was capable of continuously im-
proving I/O performance as node count was increased. Shown
in Figure 5, read times for the VPIC dataset exponentially
decreased as the node count (and by extension hard drive
count) was increased by a power of two. HDFS’s performance,
follows the same trend regardless of the reader’s use of the
locality algorithm, but as shown, the locality algorithm does
shift the read times consistently downward with the improved
read performance. In comparison, Lustre’s read performance
held approximately constant regardless of node count.

Thus, from this trending, we can reasonably expect that
given more nodes, the VisIO enabled reader would be able
to continue to linearly gain in bandwidth allowing for still
faster reads of the given dataset or capability to read in still
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larger datasets with acceptable performance. Additionally, we
notice that without the locality algorithm, HDFS is able to
surpass Lustre in read performance for this particular dataset
at between 64 and 128 nodes. Using the locality algorithm, the
read performance improves enough such that HDFS matches
and outperforms Lustre at a node count just under 64.

3) Closer Look: Reader Performance at 128 Nodes: While
Figure 5 clearly indicates the scaling trend expected from the
VisIO based reader using HDFS compared to the standard
version using Lustre, it does not clearly show the performance
benefits to ParaView of using HDFS as compared to Lustre.
Taking a closer look at the 128 node test runs, we see that
Lustre is able to read a given file out of the files needed to
construct the entire time series in 1.512 seconds while HDFS
takes either 1.134 seconds or 0.776 seconds depending on if
the locality algorithm is used or not. These differences in read
times are illustrated in Figure 6. This translates into a 28.57%
improvement in read performance if the VisIO enabled reader
without locality is used compared to Lustre and a 64.38%
improvement if the locality algorithm is used.

As a check, the ocean salinity data, was run as a second
dataset at 128 nodes to see how it performed with the various
readers. These results, also illustrated in Figure 6, showed a
significant drop in read times when using HDFS. Lustre was
able to read in the given data in 5.320 seconds per file while
the HDFS reader was able to read in the given data at a rate of
3.480 seconds per file without the locality algorithm and 2.509
seconds with the locality algorithm. This represents a 41.82%
and a 51.43% improvement respectively in per file read times.

4) Locality Algorithm Effectiveness: Use of a distributed
file system by VisIO provides the ability to remove the bottle-
neck of a centralized parallel file system’s network which is
usually a fraction of the cluster interconnect fabric’s capability.
However, while this does provide a marked improvement in
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I/O performance, further improved times can be realized when
processes are scheduled to nodes which locally contain the
data needed, as discussed in Section III.B. Looking at the test
data detailed above, we see that the VPIC dataset, for example,
achieves a 35.81% improvement in using the locality aware
VisIO based reader over the version that is not locality aware.

During testing, the number of requests for files by processes
not able to access the data locally was tracked. This number
was then converted to a ratio of the number of remotely
accessed files to the total number of files read over all of
the time steps. This ratio was used to track the effectiveness
of the locality algorithm in its ability to schedule processes
to nodes containing local copies of the data. This remote pull
ratio calculated for the VPIC and ocean salinity datasets was
7.42% and 7.68% respectively. This relatively small proportion
of remotely pulled files is a result of the HDFS’s pseudo-
random placement algorithm which presents a situation where
the needed files for a given time step may not be evenly
distributed such that across all nodes there is at least one



Fig. 7. Trace of time taken for each call to vtkFileSeriesReader with the stock reader in ParaView 3.8.0 and using Lustre as the file system. This represents
a baseline of what ParaView currently experiences in terms of I/O read performance.

Fig. 8. Trace of time taken for each call to vtkFileSeriesReader with VisIO support embedded but without the locality algorithm in operation. The number
of spikes in operation time and the wide spread of results around the trend line indicate wider variability in read times as a result of I/O not being contained
to nodes that locally store the data needed.

unique file for that time step.

In addition to tracking the remote file request percentage, a
trace of the request time for each call into vtkFileSeriesReader
was captured and plotted in Figure 7 for the stock reader in
ParaView 3.8.0 being used with Lustre. As shown, the varia-
tion in read times around the trend line is fairly wide which
complements the computed standard deviation of 0.70 seconds.
In addition, frequent bursts with read times several seconds
higher than the mean are seen indicating high congestion to
the parallel file system thus bottlenecking the application while
the read request waits to return.

In comparison, Figure 8 plots our VisIO enabled reader
but with the locality algorithm disabled. This shows strictly
the benefit a distributed file system can provide compared
to a parallel file system in terms of overall read times and
the variability in the individual operations. A look at this

trace shows that without the locality algorithm in operation,
there are still many instances of spikes in read time that are
significantly higher than the average but not as long in duration
indicating improved bandwidth. While not as substantial as
the peaks seen using Lustre, this still represents the longer
times needed to transfer large portions of the time step over
the network to the requesting nodes from the nodes storing
the data. In addition, the standard deviation for this particular
test run is 0.53 seconds showing the variability of the non-
outlier read times is less than Lustre’s standard deviation of
0.70 seconds.

In comparison to the plot in Figure 8, the plot shown in
Figure 9 shows the same VisIO enabled reader but with the
locality algorithm operational. In this case, it can be seen that
the number of outliers has been reduced to a sporadic few
indicating the minimization of longer running network reads.



Fig. 9. Trace of time taken for each call to vtkFileSeriesReader with VisIO support enabled and using the locality algorithm. Compared to Figure 8,
the number of spikes in read time are diminished and there is a tighter variability around the trend line when computation is kept predominantly to nodes
containing local copies of the needed data.

This also corresponds with the lower percent of remote pulls
detailed above. Additionally, the standard deviation drops to
0.28 seconds from 0.53 seconds without the locality algorithm.
This in turn will yield more consistent read times for the
visualization application; a preferable condition due to the
interactive nature of the application’s use.

E. Multi User Environments

While not common in traditional HPC environments, a multi
user environment may be a possible deployment path for a data
intensive compatible cluster. In this setup, nodes run tasks from
multiple users either simultaneously or in a context switching
manner thus allowing multiple user’s jobs to run and access the
distributed file system simultaneously. This is in stark contrast
to traditional HPC setups where a user is the sole user of a
subset of nodes in the cluster for the duration of the job.
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Fig. 10. Comparison of single and multi user test runs. Single user runs had
the VPIC and Ocean Salinity data run independently of each other while the
multi user runs had both run together. As VPIC is the shorter running job,
due to having fewer time steps, the impact of multiple jobs running is seen
more prominently in its runs.

Thus, to see how VisIO and HDFS would handle in an
environment where it is not the sole user, we devised a test
where two instances of ParaView would be launched at the
same time and asked to load two different datasets (VPIC

and ocean salinity) from HDFS. This would simulate two
users working on two problem sets at the same time. The
same test was also performed against Lustre with the stock
ParaView reader to show how similar increased workloads
would compare. The results are plotted in Figure 10 and show
the average over three runs compared to the numbers plotted
in Figure 6.

It should be noted that there is a 3.08 second increase
in time to read the VPIC set from Lustre under increased
load while we see only a 0.275 second increase in read time
using the VisIO package with HDFS. In comparison, the ocean
salinity visualization showed increases in read time but not as
substantial. Lustre showed a 0.221 second increase in read
time while VisIO with HDFS showed a 0.293 second increase
from their single user values. The relatively minor increases
in the ocean salinity average read times can be attributed to
the fact that the ocean salinity dataset runs for a longer time
(12 time steps longer) than the VPIC dataset. This gives the
tail end of the test similar performance characteristics as the
single user tests thus dampening the effect of having multiple
processes running.

Finally, we noted the changes in the standard deviations
of the runs’ individual I/O operation times and found that
between the multi user runs with Lustre and VisIO a standard
deviation of 2.298 seconds and 0.690 seconds respectively
were seen for VPIC. Ocean salinity showed a Lustre standard
deviation of 1.880 seconds while the VisIO standard deviation
was 1.595 seconds. Particularly illustrated with the VPIC
runs, it can be seen that VisIO manages to keep variability
in individual read times closer to constant than the standard
reader was able to using Lustre especially under increased
loads present in a multi user environment.

V. RELATED WORKS

Several visualization packages exist for scientific data anal-
ysis and are in widespread use within the High Performance
Computing (HPC) arena. VTK [21] is a framework that is used



to abstract away the OpenGL calls needed to display graphics
thus allowing the scientist to focus on their data rather than
the system. Parallel VTK [22] and its front-end, ParaView [23]
are higher level implementations of the VTK framework which
allow the user to run VTK jobs in parallel as well as to build
and control VTK programs from an easy to use GUI, respec-
tively. VisIt [24], like ParaView, is a GUI front-end to VTK
that allows the user to control the visualization process without
needing detailed, hands-on programming. EnSight [25] is an
alternate, commercially developed, tool and environment that
supports scientific visualization at scale.

Visualization at scale, however, presents its own set of chal-
lenges. Childs, et. al. [26] detail how they needed to apply a
subset of possible problem specific optimizations dynamically
to the VisIt pipeline to allow it to perform acceptably at
scale. These optimizations are specified in the notion of a
contract which is passed along the pipeline detailing what
optimizations are needed from the end of the pipeline back
to the beginning. These optimizations include such ideas as
minimizing disk reads and details on how to manipulate
the data within the pipeline. Childs, et. al. [6] also detail
the performance bottlenecks experienced when visualizing at
scale. This work, as discussed earlier, showed that I/O times
dwarfed the time needed to run the visualization algorithms
(isosurfacing in this case) and render the final image. This
result is the motivating force behind our VisIO solution to
rework I/O within the visualization pipeline.

Considering the demand for visualization at scale and
evidence of an I/O bottleneck, work has been done to alleviate
the problems associated with large amounts of data. Parallel
File Systems have been made available that are capable of
allowing multiple nodes access to the same file or subset of
files at significant bandwidths. The most prominent of these
file systems include: PVFS2 [27], Panasas [28], Lustre [29],
and GPFS [30]. However, even with the success of these
file systems, improvements have needed to be proposed and
implemented to accommodate common patterns seen in HPC
workloads, particularly N-to-1. Carns, et. al. [12] detail five
techniques to help handle small file accesses within a parallel
file system (PVFS2 in this case). Small file access poses
a performance problem for parallel file systems which are
designed to best handle large I/O operations. Similarly, Thakur,
et. al. [13] detail a method for handling noncontiguous I/O
requests from a single process and multiple processes within
a cluster to the same file (N-to-1 access pattern). For the single
process case, data sieving is used to have a process read in
a large chunk of a file and filter out of various smaller parts
needed. For the multiple process case, collective or two-phase
I/O calls for each process to read a contiguous region of the
file and then use inter-process communication to redistribute
the information read to the requesting process. While these
techniques work well for HPC simulations, a visualization
application working with a N-to-N pattern and without MPI-
IO support will not be able to benefit.

While these techniques are general in nature, some work
has been done to specifically address I/O performance within

scientific visualization workflows. Yu, et. al. [31], discuss a
method of using input processors to handle the data fetching
from the file system using optimized MPI-IO routines. Their
strategy, while showing alleviation of the I/O bottleneck,
requires dedicated nodes to be set aside for the task of
acting as input processors and the number required grows
proportional to data set size. Perterka and Ross, et. al. [7],
[8] explored running volume rendering applications at scale
directly on their BlueGene/P system rather than on a dedicated
visualization system. Their work shows that using MPI-IO
operations as well as reorganization of the simulation results
within the file assisted in providing needed I/O performance
for large datasets. Their technique, however, relies on the
presence of a parallel file system and interconnect network
that is sufficiently fast as to not bottleneck the visualization
workflow.

Complementing this work on parallel file systems, dis-
tributed file systems were developed to address the issues of
scaled out datacenters with large data volumes. The seminal
distributed file system currently is the Google File System
(GFS) [32] used to run almost all of Google’s internal in-
frastructure. The GFS calls for hard drives to be locally
installed in their servers rather than using a centralized file
system to allow for the co-location of computation on nodes
where the needed data is stored. Since GFS is a propietary
system, there exists a couple of open source implementations
which strive to replicate GFS’s functionality. The most mature
of which is Hadoop’s Distributed File System (HDFS) [10]
and upon which our proposed improvements are based. Also
available, are the CloudStore [33] and Ceph [34] distributed
file systems. Finally, D.E. Shaw Research recently proposed
a new system called Zazen [35] which migrates data from
compute resources to caches on an analysis cluster to allow
for local access to data for post-processing. While similar in
spirit to our employed method, Zazen requires specially built
analysis applications which integrate with the cache system to
determine delegation of tasks to nodes where the data locally
resides in a cache. In contrast, our VisIO system allows a
general purpose visualization application to leverage the data
locality provided by the HDFS (and without the limitations of
a cache) with just changes to the data reader code which is a
modular component to be replaced as needed.

VI. CONCLUSION

In this paper we have proposed and developed an I/O
system that is optimized for handling scientific visualization
applications working with ultra-scale datasets. Our system,
VisIO, allows traditionally MPI and POSIX based visualiza-
tion applications to leverage the increased bandwidth possible
from a distributed file system. In addition, we further stregthen
the ability of these applications to benefit from a DFS by
providing a data locality aware scheduling algorithm that is
used to schedule individual process ranks on nodes that contain
the needed data for the operation to be performed.

A VisIO enabled ParaView reader was put into operation
on TACC’s Longhorn visualization cluster and used with the



Hadoop Distributed File System. Testing was conducted on
data from the VPIC plasma physics simulation, and the ocean
salinity simulation. Results showed that use of HDFS, if
allowed to scale with the allocated node count, will linearly
improve in read bandwidth available to the application and can
exponentially decrease the amount of time needed to read a
data file by a given MPI rank. Compared to the provided,
statically-provisioned, Lustre parallel file system, HDFS is
capable of dynamically allocating storage resources (as easily
as CPU resources are allocated for a compute-bound job) and
given enough nodes can over take Lustre in read performance.
Testing showed a between 50 and 65% read performance
improvement amongst the datasets when read via our VisIO
enabled reader.

Overall, this system has proven that it is a possible path
forward for the ever increasing demands being placed on
scientific analysis visualization applications which are being
constantly challenged to interactively deliver insight to current
Petascale and future Exascale simulations and experiments.
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