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Adaptive Extraction and Quantification of Geophysical Vortices

Sean Williams, Mark Petersen, Peer-Timo Bremer, Matthew Hecht, Valerio Pascucci,
James Ahrens, Mario Hlawitschka, and Bernd Hamann
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Fig. 1. Three views of the tornado data set. (a) Arrows pointing along streamlines of velocity reveal the basic structure of the tornado.
However, we are primarily interested in its vortex core, and specifically, where the vortex core resembles a Gaussian vortex. (b) The
Q-criterion for the tornado data set, as expected, shows a vortical interior surrounded by a strain cell, where the spinning air of the
tornado shears against the calmer air outside. The vortex core is brought out in the strong negative domain of Q, but an additional
vortical funnel appears in the upper half of the tornado. (c) For our method, we compute the similarity of different Q thresholds to an
idealized Gaussian vortex. The similarity holds well on the interior, where the flow of air resembles an idealized vortex, but quickly
decays outside the core. Additionally, the funnel on top is not modeled well by Gaussian vorticity (except near the interface between
the funnel and the main core), so it also has a low fit value and is excluded.

Abstract—We consider the problem of extracting discrete two-dimensional vortices from a turbulent flow. In our approach we use
a reference model describing the expected physics and geometry of an idealized vortex. The model allows us to derive a novel
correlation between the size of the vortex and its strength, measured as the square of its strain minus the square of its vorticity. For
vortex detection in real models we use the strength parameter to locate potential vortex cores, then measure the similarity of our ideal
analytical vortex and the real vortex core for different strength thresholds. This approach provides a metric for how well a vortex core
is modeled by an ideal vortex. Moreover, this provides insight into the problem of choosing the thresholds that identify a vortex. By
selecting a target coefficient of determination (i.e., statistical confidence), we determine on a per-vortex basis what threshold of the
strength parameter would be required to extract that vortex at the chosen confidence. We validate our approach on real data from a
global ocean simulation and derive from it a map of expected vortex strengths over the global ocean.

Index Terms—Vortex extraction, feature extraction, statistical data analysis.
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1 INTRODUCTION

Vorticity is defined as the magnitude and rotational axisasfical be-
havior in a turbulent flow. In real flow, however, noise creasenall

perturbations in the vorticity and other derived fields thaist be sep-
arated from actual vortices. The standard solution to theblpm is
to only consider vorticity with magnitude above a specifige$hold.
However, it is not obvious how to choose such a thresholdnaato
ically nor whether a globally valid threshold even exits. piractice,
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one typically tries multiple thresholds until one produtessonable”

results. Nevertheless, more sophisticated methods db exish as

choosing maximum contours @b [14], but theoretical justifications
for maximum contours decisions are still lacking.

For this research, we begin instead from a fluid dynamics itiefin
of an ideal vortex in a two-dimensional domain. This anayaso
allows axis-aligned three-dimensional vortices, i.erfiges in which
the vorticity vectors inside the vortex core are fairly waligned. No-
tably, this includes most vortices of interest in the ocearid atmo-
spheric sciences. The fluid dynamics definition we use moaetic-
ity as a Gaussian, from which we derive several other prigsetuch
as the strain tensor. We describe a nearly-linear reldtiprisetween

Q-criterion thresholds and the surface area of the feature entirely be-

low each threshold. Furthermore, we show that this relatignonly
holds while the vortex is dominated by Gaussian vorticitync® a
threshold begins including the background flow, the refetiop no
longer holds—providing information about what threshdid)ds ap-
propriate for that vortex.

We specify the similarity of an actual vortex to an ideal earas
a coefficient of determination of a linear fit, so rather thamesholds
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Fig. 2. The Gaussian function used for idealized vorticity, w(r) =
exp(*T’Z), plotted as a function of r, the distance from the center of

the vortex. A corresponding Gaussian vortex is inset, with arrows point-
ing along streamlines of velocity and colored by speed. Despite be-
ing a Gaussian, for the regions where vorticity dominates this idealized
vortex—out to a radius of about 1.5—the vorticity function is very close
to linear. To quantify this, for each value of radius, we plot the coefficient
of determination (R?) of vorticity to a least-squares linear fit of vorticity
out to that radius. This fit indicates that the Gaussian is at least 90%
similar to a linear function to a radius of about 3.5, which is well past the
edge of this vortex. Thus, we assume for this research that, for vortex
interiors, vorticity can be approximated as a linear function of radius.
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Fig. 3. Schematic views of the three components that make up the
Q-criterion. Vorticity is caused by flow circling an axis, normal strain
is caused by two flows colliding and pulling apart, and shear strain is
caused by a lateral change in velocity.

centered in the kernel to find circular flows, then fitting dipsk over
the entire vortex.

Several techniques have also been developed to furthee rafial-
ysis of the vorticity field. We begin from th@-criterion [4], which
highlights areas where vorticity dominates strain. Theriterionwill
be explained in greater detail in the next section. Our @hoicthis
criterion was initially motivated by its use in oceanogrgphihere the
Q-criterionis known as thé@kubo-Weiss criteriofil1]. Also of note
is the A,-criterion [6], that uses the second eigenvalue of the strain
tensor times the sum of the squares of strain and vorticithetermine
whether vorticity or strain are dominant in a region. We ehtt&eQ-
criterion over A, because it is the standard vortex criterion within the
oceanographic community.

being chosen as semi-arbitrary values of vorticityorve instead use 3 \orTEX DETECTION

statistical confidence levels. Another way of looking attfesult is

to compare th& thresholds that produce vortices meeting a particul

confidence level. Since the vortices are rated based on hdivtheg

structurally conform to an ideal vortex, deriviggythresholds from a

confidence level produces an approximation of the simylaritvor-
tices throughout a data set to the ideal.

To take advantage of this additional information, we apply o

method to a simulated global ocean data set to begin quingifiie

structural differences between vortices in a variety ofents around

the world. Comparing these results against what is obsenally

known about the real ocean lends further validity to our roéttand

opens a new avenue of study for vortices in applied scientifioains.
The primary contributions of this paper are:

Ve begin with the assumption that vorticity in an ideal vertan be

modeled as a Gaussian in the radial direction. This is armkstiad
model in the fluid dynamics community [7]. Further, in the ace
it has been found to be a reasonable model both analytic3|llgrd
observationally [13], and in the atmosphere, this idetibrehas been
used to approximate the vorticity profile of hurricanes [Bje general
form of this Gaussian, for vertical and horizontal scalingfficients

C; andcy, is:
_r2
ry=cye — 1
w( ) 1EXp 2C§ ( )

e An algorithm for detecting vortices based on a new physics- 10 simplify this analysis, we claim, based on the graph inuFeg2

based characterization

that, for vortex interiors, vorticity can be approximatesl a linear
function of radius. If we consider the vortex interior to e theg-

e A local criterion to find aQ threshold for each vortex based onative domain ofQ, then by figure 4a, this extends to a radius of about

statistical confidence

1.5. At this distance, the linear fit is still extremely high. Waon-
sider the definition of the&)-criterion, Q = €2 — w?. Here, ¢ is the

e An empirical study to validate the procedure both on cladsicmagnitude of the strain tensor, andlis the magnitude of vorticity.

visualization data, and on global ocean simulation datavstp
different characteristics in different oceans

2 RELATED WORK

Extracting and visualizing turbulence in vector fields eyl been of
interest to the visualization community [8]. Methods getigrfocus
on either extracting specific structures (e.g., vorticeg) drawing a
bounding volume [15], or extracting the overall topologyl aisualiz-
ing it through glyphs or other proxies [18]. For extractingrtex-like
structures in particular, popular methods include findiagions of
high vorticity [19], streamline geometry [12] or, if the dadre avail-
able, by looking for regions of low pressure at the center oba
tex [1].

For two-dimensional or axis-aligned vortices, one can kde& for
circular behavior in the velocity field directly. Jiang etaalalyze the
problem topologically [5], by looking for kernels in whiclaeh vector
in the kernel points in a unique direction range. SimilaBgod et
al [17] identify vortex centers in the ocean by passing<cBkernel of
the angles between an east-pointing vector and the tangieatsircle

Schematics of flows typical of high vorticity and the two campnts
that contribute to strain are shown in Figure 3. The chiefiaggion

of the Q-criterionis that, inside a vortex, strain is low and vorticity is
high, while the boundary of a vortex is indicated by highisteand low
vorticity. Since vorticity dominates strain on vortex irtes, we con-
clude thatQ ~ ? ~ r2. Furthermore, we can see from Figure 4b that
the dominance of vorticity inside the vortex (again, for tiegative
domain ofQ) is such that this does in fact create a linear relationship
betweenQ andr? (sincer? is proportional to area).

We also assume that an ideal vortex is circular. As a redt, t
area of the vortex will grow quadratically with radius. Ietkortex is
elliptical, it will grow as the product of half its major andimor axes.
This still results in quadratic growth: given an ellipsetwihajor and
minor axis lengths andb, respectively, and constant eccentriciy
thenb = ag, so the area grows akaz.

Hence, for a vortex that is governed by Gaussian vorticitytsn
core and has a core that is either circular or a well-behalipde, the
Q-criterion and its area will grow linearly with respect to each other.
This result is important for three main reasons.



First, how well a vortex conforms to these rules can be gfiadtas
a statistical measure. We are concerned with how cld@end area,
both as functions of radius, grow linearly with respect toteather,
which can be done by computing the coefficient of determimegR?)

betweenQ versusA and a linear least-squares fit of the same. This *

changes the art of choosing a threshold from one bas€@ariterion
values that are difficult to interpret to a straightforwatmice of how
confidently the data fit an ideal model.

Second, a statistical confidence level still implies a thoéd onQ,
but on a per-vortex basis. This provides a consistent wagmiaring
the relative similarity of different vortices to an ideal @&sian vortex,

since the higher the allowable value@jfthe longer Gaussian vorticity

remains the dominant effect in the flow. We specifically aghlg to
data from a global ocean simulation to show the stabilitfesoatices
in different major currents around the world.

Finally, this relationship provides an easy way to sepdeaessian-
like vortices from other high-vorticity features. In thegbire 6a, sharp
turns in strong currents like the Gulf Stream generate corsinaped
spikes in vorticity that, on visual inspection, are clearbt vortices.
As a result of these high-vorticity meanders in the strongesus be-
ing neither Gaussian vortices nor represented by a ciradipse, al-
most all of them fail to hold this linear relationship. The/fthat hold
this relationship are extremely special cases, and williseudsed in
greater detail later.

For the next three sections, we will demonstrate this i@tatiip
empirically, first with an idealized analytical vortex, tha simple tor-
nado data set, and finally with data from a complex global ncéa-
ulation.

4 IDEAL VORTICES

According to [7], a planar slice of an idealized axis-aligvertex can
be described in polar coordinates in terms of vorticitand straire:
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Here,v; andvg are the radial and azimuthal velocities, respectively.

If this vortex is placed at the origin, and taking the ideatizase that
Vi =0 and-%; =0, theQ-criterionis then:

Q = [elP—wl? 4
B d(vg/r) 2 1arvg\?
= (VT) ‘(?7) ®)
Vg 0Vvg
47058, 6)

One may compute a profile of velocity, strain, and @weriterion
for this vortex as a function of radius, as shown in Figureldahe vor-
tex core, the vortex is dominated by vorticity, so it initjaincreases
with radius as a particle must travel faster to make a fulbhevon of
the vortex center in the same amount of time. Further froncémer,
however, flow begins to slow down as vorticity is less domirend,
to compensate, the flow begins shearing. This causes siraicrease
while vorticity decreases. The combination of these effeztuses
the characteristic behavior of tig@criterion: Q is negative inside the
vortex core, where vorticity dominates, but increases! lrettoming
positive, where strain dominates. Finally, all parametensverge to
zero as the vortex loses all influence over the flow.

Figure 4b then demonstrates the near-linear relationsttywden
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Fig. 4. The properties of an idealized vortex, with vorticity modeled
as a Gaussian in radius. (@) Azimuthal velocity, strain, vorticity, and
Q-criterion as functions of radius. Vorticity is modeled as a Gaussian,
from which the other properties were derived. The interaction of vorticity
and strain causes the characteristic behavior of the Q-criterion: Q is
negative inside the vortex core, where vorticity dominates, but increases
until becoming positive, where strain dominates. (b) The Q-criterion as
a function of area, along with stippled lines showing a least squares
linear fit of each component of the curve from 0 until the end of that
color. Inside the vortex core (red), the two grow nearly linearly. Taking
a linear fit of the red section yields a coefficient of determination of 0.99.
If the area under consideration is expanded outside the vortex core, this
nearly-linear relationship breaks down (green), and gets worse as more
of the background flow is added (blue). (c) The Q-criterion and the
coefficient of determination (R?) as a function of radius. The R? value
plotted in this graph is the quality of a linear fit of area versus Q if the
corresponding Q value were used as a threshold, i.e., an R? value here
is the quality of fit for all points to its left. As expected, in the vorticity-
dominated region, area and Q conform well to a linear relationship, while
outside, the coefficient of determination drops precipitously.

Q and area.Q is plotted with respect to area, then broken into three

regions, colored red, green, and blue. For each regiongearlifit is

taken betweel® and area for the points in that region and all points

in all previous regions, so the green fit is for data in bothrddeand



green regions. The fit is initially quite good, at 99% in the re- >
gion (to a radius of about.96), but afteiQ passes 0 and ceases being
dominated by vorticity, the relationship breaks down. By time one ®
considers both the red and green regions (at a radius of ailg)uhe
fitis already down to 88%, while the fit over the entire datdsdown B
at 63%. Taking instead a “rolling fit"—computing the fit at bae- &
solved radius—we get Figure 4c, in which the fit is shown to biéeq N
high for radii still within the vortex core, but dropping aftiickly once
the radius extends outside the core. N -
We now present an algorithm to make use of this relationstsp,
suming a data set with a single vortex and no local minimardtien
the global minimum (i.e., the data decrease monotonicalyp list of
Q values for all points, here just call€ We take an input, the reso-
lution of Q values to be checked, and an inputhe desired confidence
level. The aIgorthm return§ the maXIml@thrgshold that results in data. Area (computed as the number of points in the slice below a
the des”.Ed confidence, drif that Conﬂqence IS never reathd' Th iven Q threshold) initially grows quite linearly. The growth of the vortex
assumptions (one vortex and monotonic value®)tan be discarded begins speeding up after Q thresholds of —0.06, while after —0.02 the

Q Threshold

—R"2 —Area (# points)

Fig. 5. Area and R? plotted against Q for a middle z-slice of the tornado

by making the algorithm instead breadth-first search fromimm of
Q, and preserving search visitation marks between vorteeshat a
point is never visited again, even on future searches. Taisifimul-
tiple minima are contained in a single vortex, they will ad ¥isited
(and marked to not be considered in the future), so that thexavill
not be counted multiple times.
Input: r >0,ce[0,1]
Qn, An < 0 {Lists to store a history of (Q, A) paifs
g < min(Q) {Iterated value, from min(Q) to}0
s« —q/r {How much to step Q to get r iteratiohs
Cq < L {Highest Q value meeting c% confidefice
whileq<0do
a<+ |{qc € Q,qc < q}| {Area: #points below current thresh¢ld
Qn < QnU{q}
An < AU{a}
r + cod(Qp, An) {Coefficient of determination of a linear it
if r > cthen
CqgQ
end if
g« q+s
end while
return cq
The function “cod” returns the coefficient of determinatafra lin-
ear fit between the two input sets. This is computed first byirigna
linear least squares fit of the data, which returns a fittimgfion, i.e.,
it returns coefficientgy andc; such thatAy = ¢y +¢1Qa. Thus, for
anyi, the predicted area i = cp + c10i. Additionally, we needh, the
average of all; € A,. Then the coefficient of determination is:

. Si@—fi)?
-1 Yi(a —A)?

5 SIMPLE VORTICES: THE TORNADO
In order to demonstrate the effectiveness of this methodeahdata,

@)

growth is dramatically faster. For this slice, then, the linearity of this
vortex crosses a confidence of 90% with a Q threshold of —0.04. If this
graph continued into the positive domain, at a threshold of 0.01 there
would be almost 4000points in the vortex and a confidence of just 8%.

2% of the data range (the positive domain@f into half the color
scale.

To analyze the tornado data set for Gaussian vorticity iehave
treat the data as stacks of two-dimensional slices, thollgtviag
them to still have & (depth) velocity component. To visualize the
effect of the fitting criterion, for each slice we take digeréerative
thresholds ofQ and computdR? for that threshold’s linear fit against
area, computed as the number of points in that slice belowhtiesh-
old. This is repeated on intervals Qfto a maximum of @02, versus
the data set maximum of abouD03. The resulting:? value for each
interval is stored at all points in that interval. In otherras, thisR2
value is assigned to all points that are at or below the ctithensh-
old, but above the previous threshold. TR&field is shown volume-
rendered in Figure 1c, with a transfer function specifichilyhlight-
ing points with highR2. For most of the tornado data set, this extracts
roughly the same vortex core as the r@parameter, with two notable
exceptions. First, the conic funnel near the top is nearlyegshow-
ing that only the center of the tornado behaves like a Ganssigex.
Second, the transfer function can now be set much more ngfatin
and without any tuning: the transfer function®% ramps opacity lin-
early from a low level at @5 to opaque D, while all values below
0.75 are kept at very low opacity.

To address the question of what threshold to choos@®fave also
plot area and=? againstQ threshold for slice 31 in Figure 5. For
very low values ofQ, the linear fit matches the data quite well, with
the RZ value staying above 95% up @ thresholds of about0.06.

R2 crosses 90% confidence at abet@.04, and begins falling rapidly
after thresholds of about0.02. Consistent with this, area as a func-
tion of Q threshold rises in a near-linear fashion until thresholfls o

we begin with a simulation of a tornado [2]. The data are on % 64bout—0.06, then bumps up and climbs at a slightly higher rate. After

regular grid, containing a three-vector of velocity at gveoint. The
data contain only a single tornado, with surrounding aid e core
of the tornado roughly follows the z-axis. For a first look la¢ tor-
nado data set, we show arrows pointing along streamlineslotity,

colored and sized based on speed (Figure 1a). Notably, thado is
faster and wider at the top than near the bottom, but prisnarily in

an outer envelope.

thresholds 0f-0.02, area climbs quite rapidly. Once tQethresholds
near 0, the background flow enters the threshold, and thejargss
into the thousands of points.

COMPLEX VORTICES: GLOBAL OCEAN SIMULATION
Now that our method has been established for a referencesdgta

Computing theQ-criterion for the tornado data set, in Figure 1bwe use this technique to extract vortices from a global océmula-

shows a strong vortex core up the center surrounded by adaiaja

tion while gathering statistical information about the aeibr of the

cell. However, theQ field also shows a strong cone-shaped vorticaortices over time. To this end, we employ Los Alamos Natidsado-

funnel near the top that is not part of the main core of theadm
Additionally, as before, it is unclear which threshold @fto use to
extract the relevant extent of the vortex cofgranges from-0.2848
to 0.003329, while the color scale in that visualization (frer.003

oratory’s Parallel Ocean Program (POP) [16]. The runs of R@P
use employ a 3608 2400x 42 rectilinear grid, providing a horizon-
tal resolution of abou%o, or approximately 10 km at the equator.
Depths span a range of 5000 m, with vertical grid cell thidsneng-

to 0.003) was chosen to elucidate the structure of the data withdng from 10 m near the surface to 250 m in the deep ocean. We only

creating color scale discretization problems, i.e., frartiipg less than

require velocity information to comput®. In the ocean, horizontal



Fig. 6. Here we compare how different confidence levels affect vortex identification in the region of the Gulf Stream. (a) The Q-criterion at the
surface of the Atlantic Ocean shows both a rich population of vortices, and regions of high vorticity caused by the meandering path of the Gulf
Stream. For the purpose of visualization, this field is extremely dense and difficult to understand, and for the purpose of analysis, the presence of
so many false positives (i.e., meanders and boundary shear) will corrupt any data about the vortices. (b) The confidence levels associated with
each high-vorticity feature, discretized to 5%. Features above 95% (in bright magenta) very closely resemble what we would expect a vortex to look
like, while those below 85% (in dark red, yellow, and green) almost all look dubious. The quality of features between 85% and 95% (blue and cyan)
is mixed, with several good features in that range, but some dubious features as well. We choose a 90% threshold for future analysis based on
a qualitative trade-off between false positives and false negatives, and to ensure that vortices could survive minor distortions for the purposes of
vortex tracking.

velocities (i.e., in thexy-plane) are about three orders of magnitudeount) and computg?2 for the running list of Q, A) pairs against their

greater than vertical velocities, so we only consider lardinal and linear fit. Once th&R? value falls below a chosen threshold, the method

latitudinal components of velocity. stops and the maximu@ found on this search is associated with that
Oceanic vortices, also known as eddies, isolate heat amimist vortex.

from the surrounding waters, and transport these progedoss  Eigyre 6a shows the field off the eastern coast of the United

great distances. This in turn influences biolqgical protitgt and States, where the powerful Gulf Stream carries warm waten fthe
carbon uptake from the atmosphere, and ultimately afféwsrate Gyt of Mexico north along the coast, before departing theticental

of carbon accumulation that forces atmospheric climatégea In  gheif at Cape Hatteras and eventually flowing into the Notiaric
§tudy|ng oceanic vortices, researchers would like to mte_g them  current. In a standard oceanographic analysis, everytiehay —0.2
into well-formed vortices that tend to transport water @ndfes and i, the Q-criterion would be considered a vortex: in our visualizations,
be long-lived, while rejecting areas of vorticity causedstiear lay- s corresponds to all the red and pink regions in FiguredBa. new
ers near boundaries and jets. TQeeriterion is the standard oceano- athod shows that two distinct types of structures are natssian-

graphic statistic to find vortices, but it does not diffeiate between |ixe vortices and are filtered out: small scale boundary shad me-
these behaviors, while the method we propose here does. anders of jets.

The first issue to consider with the ocean simulation datais v Vorticity due to boundary shear is clearly seen in Eiqure Gt
tex identification, followed by non-vortex removal. One betana- 2 (;fltze l(JBreenIarl:d cogst Labrlador Seya o IHuéggn Bhie an
lytical problems with theQ-criterion in the oceanographic commu- sirr?ply the result of fluid roIIin,g up between o’cean curremtd a nyc?-
nity is one of reconciliation.  Different techniques yieldferent nu- slip land boundary. Almost all of this is filtered out at the®sonfi-

merical ranges and scaling, but oceanographers preferntoncaoi- P oo . -~
cate and share data in an internally consistent way. To asdnese J€nce levelin Figure 6b (in pink), showing that the boundanyicity
does not closely fit the description of a Gaussian vortexofekr con-

problems, oceanographers typically normalize ti@ivalues to the idence levels, a small number of vortices in the roll-up oegiare
standard deviation of over the domain they consider. This Creategdmitted ’ p oeg

more problems, since the different current structuresiimoua regions
lead to different normalizations based on the domain beingidered. ~ On the other hand, as the Gulf Stream slowly meanders, lange v
For example, a regional study of the North Atlantic, with #teong tices are pinched off into the Atlantic Ocean. The meandeesnt
shearing and eddies of the Gulf Stream, could have a mor¢idraselves, however, also generate very high vorticity, andeapm the
Q-criterion normalization than the relatively quiescent MediterraneaQ Plot as quarter- and half-turns in the negative (red) domadgain,
Sea. Nonetheless, tivalues shown in this section are normalized téhese meanders do not generally match the description otiasia
the standard deviation at the surface over the entire dotamaintain  Vortex, so are rejected. When our method is applied, as ur&igb,
the standard used by oceanographers. Since our study isroedc features thatappear to be true vortices are shown to beytpgéierred
with confidence rather than a particul@rthreshold (or range), and (i-€., in blue or pink) over meanders. For many meanderglgifail-
the confidences are computed per-vortex, this normalizaties not ing to match one of the two assumptions of our method (Ganissia
affect our results in any meaningful way. ticity, and near-circular or elliptic shape) causes theme@xcluded.
We demonstrated in the previous section that our method ean b There are however some corner cases where a meander’styortic
used to identify suitable values Qffor extracting a vortex at a chosenprofile can resemble that of a Gaussian vortex, and wheraatsey- or
confidence. For the ocean data, we do this extraction on aquex  half-turn shape is similar enough to a deformed ellipse. tistncases
basis. Beginning with minima @, we iteratively add adjacent points, such meanders will still be ruled out at high confidence Eva$ the
always selecting the neighboring point with low€¥tvalue. As the meander causes water inside the area of the arc to turn acvesit-
value ofQ in a vortex rises, we keep track of pairs@find area (point ing a lower-magnitude patch of vorticity that the meandengwabout.



Q2.2 -2 -1.8 -16 -1.4 -12 -1 -0.8 -0.6 -0.4 -0.2 0
Q Threshold

—R2 —Count

Q Threshold

(b)

Fig. 7. Graphs of Q threshold versus area, and Q threshold versus R?,
for a well-behaved vortex (a) and a well-behaved meander (b) in the
global ocean simulation data, with the features themselves inset. (a):
Q grows linearly with respect to area for almost the entire span of the
vortex: the graph ends just before the Q threshold is high enough to
begin including the background ocean. After some initial noise (our de-
tection algorithm accounts for this by allowing a vortex to grow initially
without R? checks, to ensure it contains enough samples to be numeri-
cally stable), the R? of the vortex is above 90%for all the span checked
here, and most of it above 95% Note in the inset that the near-quadratic
growth of Q with respect to radius causes each colored ring to be thin-
ner than the last. (The color scale clips all values below —3 to the same
purple, hence the large purple center.) (b): The core of the meander
also resembles a vortex, and has fairly good R? for low thresholds of
Q. However, this meander induces rotation inside its arc, causing a
larger secondary vorticity patch. Once this patch begins being added at
Q thresholds of about —1.5, the rate of growth of the vortex increases,
causing its confidence to fall below 90% past thresholds of about —0.7.
In the inset, the purple and blue form bands in a similar fashion to the
vortex in (@), while the green region (representing values near —1.25) is
much larger than the blue. This violates the expectation that Q grows
quadratically with radius, and corresponds to the Q value in the plot
where R? starts dropping.

Count

to the surface of the Earth.) Additionally, we approximédte transla-
tional velocity of the vortex as the average velocity of aings in the
vortex. This follows from the idea of a spinning hockey pudoslat-
ing across a rink: points on opposite sides of the puck wilteheach
other’s rotational velocity, leaving the translationalogty to emerge
from the sum.

To compute the tracking, each vortex is translated into &xt time
step by converting its velocity in degrees per day, sincé &ate step
is one day long, and adding that velocity to its centroid. Taetices
are considered the same (i.e., given the same id humbe#®iifaan-
troids are close together, and their radii are similar. @gatloseness
is taken as a ratio between centroid separation and theesmadlius,
which we require to be below.B5, and we require that the ratio be-
tween the smaller and larger radii be abové. O/Ne plot the courses
followed by the 5000 longest-lived vortices in Figure 8athagolors
assigned randomly in order to distinguish between nearliices.
This plot agrees with the standard observations about ogardices.
First, they primarily occur near three major currents: thdf Gtream
off the eastern coast of the United States, the Kuroshioebumff
the coast of Japan, and the Antarctic Circumpolar Currengirg
Antarctica in the Southern Ocean. Additionally, large ic@$ appear
in this plot at several well known regions of eddy activithetAgul-
has Rings following a course from the southern tip of Afrieatiing
towards Brazil, and a Gulf Ring, created as a meander as tbp Lo
Current passes through the Yucatan Channel, appearingcieeeat
vortex downstream of the Channel and then migrating wesisadhe
Gulf of Mexico. Several large and long-lived vortices arersén the
Mediterranean Sea, most of which are nearly stationary.

In order to address the complementary question, of whetleerdr-
tices being excluded by this criterion should be excludesinext an-
alyze the relationship between our criterion and lifetivie apply the
tracking algorithm to the full set of high-vorticity feaes regardless
of confidence. The algorithm assigns an id number to eaclexort
such that vortices considered to be the same across diftearensteps
receive the same id number. Each id is then given a lifetiompuited
as the date of the last time step that id appears in minus 8tdifire
step it appears in plus one. We then divide the high-voytigiatures
into those that have at least 90% confidence, and those tmattdbor
each of these sets, we compute the probability distribdtiontion of
lifetime. In other words, for a given vortex, what is the pabbity
that it will live for n days, for alln? These two PDFs are shown in
Figure 8b, with logarithmic scaling on probability. Thisoplshows
that, indeed, high-confidence vortices are more likely ¥e lbnger,
and low-confidence vortices are more likely to have a shdifeer

For our second analysis, shown in Figure 9, we focus on five rel
tively long-lived vortices in the North Atlantic. The votgs are drawn
in time step order, so that later time steps occlude eaitigz steps.
Thus we can see that all six vortices are traveling roughistwielow
the map, the confidence in each vortex is plotted over iterie All
plots fall between confidences of80and 10, with the center line at
0.9. The plots show a large amount of small-scale jitter (onadesof
about 002), and occasionally the vortex will jump abruptly down and
back up. This is most likely due to either the vortex inteiragivith

The minimumQ for a meander will lie within the meander itself, so@nother, causing each to distort, or possibly due to numleissues.

propagation will begin within the meander, and could veryl wsw
with area at a fairly linear rate. Once the propagation readhis inner
vorticity zone, however, the amount of area added with ehahge of
theQ threshold will greatly out-pace that inside the meandeshasvn
in Figure 7b, and=2 will fall off rapidly.

Finally, we present two more in-depth analyses of the amlutii
data generated by this method in Figures 8 and 9. These anakfly
on tracking to see whether a high confidence is related to-ferrg
stability. We wish to summarize the data, which in their rawni take
up almost a terabyte. To do this, after computing the confidef a
vortex, we write out a summary that approximates the vorsex eir-
cle with center of the vortex’s centroid at the depth whegewbrtex
is strongest (i.e., with minimur@® value), and radius of/TA, where

Interestingly, only the blue vortex has a confidence drdjefore the
tracking is lost. This could either indicate that the timalecf vor-
tex death is quite fast, or that the algorithm excludes thiegiyortex,
e.g., because a fast change in radius meant the trackimgiantere
not met. The specific mechanics of vortex death in the ocesmvay,
is a generally open question that we hope to investigatetimgwvork.

7 CONCLUSIONS

We introduced a new, statistically-driven technique faafying and
extracting vortices from th@-criterion. Our method derives from the
math and physics of Gaussian vortices a novel near-linégtioeship
that can easily be evaluated using a coefficient of detetinimaThis
produces, on a per-vortex basis, a level of confidence of gpadm

A is the number of points at the same depth. (That is, the suynmaon between a real vortex and a model vortex. We can thenrhakkt

is generated from the intersection of the vortex with a plaaellel

from a statistical confidence to the maximum threshol®@aissoci-
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Fig. 8. (a) After applying feature tracking to the data, we take the 5000longest-lived vortices and plot the courses they take, with random coloration
to distinguish individual vortices. As expected from observation, vortices appear primarily associated with the Gulf Stream off the eastern coast of
the United States, the Kuroshio Current off the coast of Japan, and the Antarctic Circumpolar Current around the Southern Ocean near Antarctica.
Also as expected, vortices are relatively rare near the equator, where Coriolis forces are weak. (b) To determine whether high-confidence vortices
are also longer-lived, we take all high-vorticity features (regardless of confidence) and apply tracking. Vortices are given id numbers based on the
tracking (so if two vortices in adjacent time steps are identified as being the same vortex at different times, they’re given the same id), then each id
number is given a lifetime of the date of the last time step it appears in minus the date of the first time step it appears in plus one. We then compute
a probability distribution function of vortex lifetime, but splitting vortices into those with confidence above 90% and those below. A vortex can over
time go above and below the threshold, so each vortex of each id number is counted separately. We see from this that low-confidence vortices are
indeed more likely to have shorter lives, while high-confidence vortices are more likely to live longer.



Fig. 9. We extracted five long-lived vortices from the North Atlantic and plotted them in different colors. All five vortices are tending west: the circles
representing the vortices were drawn in time step order, so later time steps occlude earlier time steps. Below, the confidence of each vortex is
plotted over its lifetime. All confidences range between 0.8 and 1.0, and each graph is associated with the vortex with the same color as the graph’s
line. The x-axis of each graph is time, scaled over each vortex’s lifetime, so the start, end, and horizontal scaling of the graphs are not directly
comparable. Despite some small-scale jitter and occasional sharp jumps (most likely caused by temporary distortion from interacting with another

vortex), the confidences are fairly stable up until the vortex is lost.

ated with that confidence, allowing us to further describe laell,

within a single confidence level, different vortices adher¢he def-
inition of Gaussian vortices. Doing so removes the ambyjgfiam

choosing transfer functions for rendering, and from chagshresh-
olds to define a vortex for data analysis.

(8]

Using data from a global ocean simulation, we show that owr ne []

method is able to pick out well-formed, Gaussian-like va&$, while
rejecting vorticity in boundary shear layers and meandgjet®. This
distinction is scientifically important because well-fahvortices
isolate source waters and transport heat and nutrientsrttha¢nce
the carbon cycle and climate change [10]. One may track s@diess
the ocean, and observe that their maximum confidence vaduesim
fairly consistent for isolated eddies.

The next step is to apply this Guassian vortex method to atirer
locity data sets, such as satellite observations of theroaed atmo-
sphere, and to expand our vortex tracking to collect timgeddant
statistics of other fields like temperature and salinitydach vortex.
We could then investigate what component of heat and sakpat is
due to discrete eddies, and whether Gaussian-like eddiestort wa-
ter properties more efficiently than other eddies. Applytitig method
to three dimensional flows is another potential directiohicl would
require expanding the analytical foundations of this wanll gesting
it on non-geophysical data sets.
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