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Trends for HPC scientific
visualization and analysis

Relentless increase in data sizes

3 orders of magnitude every
ten years

Adapting to changing
infrastructure

Shared memory, clusters,
threading, cloud

Advancing the fundamentals ‘ h

Improved end-to-end workflow 4%
and cognitive understanding

How about the user
experience?




Responding to the
trends: ParaView

- An open-source, scalable, multi-platform
visualization application

- Support for distributed computation
models to process large data sets

— Billions of AMR cells, Scaling test
over 1 Trillion cells

- Used by academic, government and
commercial institutions worldwide
- Downloaded ~100K times per year

- Developed by Kitware, LANL, SNL...

- QOriginally designed to support a post
processing WOorkilow

- Simulations save data to storage and
scientist interactive visualizes results

http://paraview.org



Understand our simulations

Are we solvin? our equations correctly?
« Debugging/verification

|s our data corrupted?
o Fault detection

How is our performance?
e Time, space, power

How do our simulation results compare to real-world
experimental data?
o Validation

Have we found a new scientific phenomena or
process?

e Scientific discovery



Context: In situ analysis required at
exacale

The traditional post-processing approach is
becoming unworkable

= Temporal simulation snapshots are saved at
longer intervals

— Full checkpoints are costly - less temporal
data available for analysis

= Rate of improvement of rotating storage is not
keeping pace with compute

— Power, cost and reliability are becoming
significant issues



Transition from a post-processing to an in situ
focused approach
(True for all analysis problems)

= |n situ saves reduced-sized data products during
simulation run

« Benefits:
— Save disk space
— Save time in post-processing analysis
— Produce higher temporal fidelity results

= Sampling problem

= Automatic analysis during the simulation run
— Prioritized by scientist’'s importance metrics
— Event detection, characterization and response

= Help manage cognitive and storage resource budget



In situ analysis framework

= Detection
— Event type
— Issues: Granularity / Data Size / Accuracy
= Characterization
 Fault, bug or new science?
— Interface with detection and response
= Response
— Action
- Examples from in situ analysis

= This talk’s perspective from application level down:

— Currently temporal granularity for in situ analysis is
typically at each simulation time step



Application example of framework: Simple
range constraints for MPAS ocean code

= Example: MPAS ocean code
« Temperature variable value: -2C to 30C
— Values are significantly more constrained spatially

| m—

Mean climate values
— Live spotlight dashboard for
active simulation runs

- Red > 10%
- Yellow between 5-10%
- Green < 5%

— Use case when coupling
- Atmosphere, ocean

Philosophical question: What is a data value?

— Value at point? Spatial and temporal neighbors?
Contribution to scientific feature? Model? Ensemble?



General Purpose

Domain Specific

Event Detectors

O
Statistics,
Information
Theory
(Entropy)
oy
4
- Feature detection,
— NaN, Memory coarse simulation
Error model
| ]

Machine Science



Event detection and characterization via
model comparison




Event detection - Feature extraction and counting

0.029834




Evidence/feature-based verification
process for cosmology

Step 1: Define (or refine) measurable features

Step 2: Formulate (or refine) a hypothesis about the measurable
feature in the simulation codes

Step 3: Qualitative comparative visualization
Step 4: Quantitative comparative visualization
Repeat starting at step 1 until the codes are verified

Hypothesis 1: An AMR code with a peak resolution equivalent to a
uniform grid code should resolve all halos of interest --- find and
count...

GADGET mMC2 ENZO




Evidence/feature-based verification
process for cosmology

Hypothesis 2: --- The halos do not form at early times when the base resolution
s still very low and cannot be recovered later - find, bin and count...

GADGET-2
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Measures and mappings

Machine Science

Example: McCormick — Debugging a
domain-specific language
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Issue - Spatial and temporal granularity



Issue - Data size
Significant in situ data reduction

Data parallelism Handle large datasets
Make reduction possible

Multi-resolution Make focused exploration
possible
Analysis operators A dimension reduction
Statistical sampling 1-2 orders of magnitude
Compression 1 order of magnitude

Feature extraction 2 orders of magnitude



Issue - How accurate do we need to
be”? data reduction / quality

» Random sampling
provides a data
representation that
IS unbiased for
statistical
estimators, e.g.,
mean and others

» Since the sampling
algorithm is in situ:
accuracy
metric(simulation
data, sampled
representation)
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Feature Extraction: Halo Finding
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. The red, green, and blue curves are 0.19%, 1.6%, and

12.5% samples. . The black curve is the original data.
Calculate the halo mass function for different sample
sizes of 2563 particles

Red is 0.19% sample data, black is original simulation data



How accurate do we need to be?
In situ compression with quantified accuracy

= [n situ compression of simulation "%
data 1.00E-14

« Use JPEG 2000 to compress
data

« Quantify the maximum/L-infinity
norm) data quality for
scientific analysis

1.00E-13

1.00E-12

1.00E-11

maximum absolute error

1.00E-10

1.00E-09
0 2 4 6 8 10 12 14

bit rate

= Measure the maximum point
error

- Guarantee accuracy to x
decimal places

« Accuracy Metric

(Simulation data -
Compressed representation)

0.1
Fast transfer,

~_
. managed error

10 3

Slow transfer,
No error

transfer time minutes at 1MB/s

100

= User can trade read |/O time vs. €09 1610 1611 1612 1613 1614 1615
data accuracy in a quantifiable maximum absolute error
manner



Isovalues on compressed simulation data with
bounding error - (32 bits, 3200x2400x42, 1.4 GB)

1.0 bits
43.3 MB¥ .




Event characterization

Event detected — What type?

Fault
Spatial locality? Memory based?
Not reproducible? — SDC?

Bug
Reproducible? Violate data and

compute representations?

Science Result
Reproducible? V&V?

Create a log of events,
characterizations and actions

original.frame][, 3]

50

-50

Cold water at the equator
— likely SDC...

ressamesss,
g
ieases,




Event detection: automated algorithms
Adaptive focus based on selected events

timestep, timestep, ., g:g;rgegcrﬁ

= Create adaptive analysis-based grid
« Histogram at each grid element
— Across all axises (spatial, value, multivariate)
= Use for spatial, temporal selection
- Cameras, storage, feature identification



Event Detection - Statistical Measures

« Based on the number
of unique data values
« U - Number of unigue
histogram values

. Histogram across all
axises (spatial, value,
multivariate)

. |f the difference
exceeds a threshold,
detect event

. Currently exploring
other more
sophisticated
statistical metrics

. Kolmogorov—Smirnov
distance metric
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Event Detection: Sampling Using Analysis Driven
Refinement (ADR)

Recursive metric-based
refinement
Multidimensional

Entropy metric used on right,
unigque value below

Ocean Salt Timestep Selection: K-S Test

iR

1 1 1 1 1 1 1 1
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Timestep

Ocean Temperature Timestep Selection: K-S Test

i Hi
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Timestep

Sampling in Time Sampling in Space
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Data reduction and event response:
Image database approach - Cinema

Challenge
In situ is a batch process
Concern that exploratory aspect of analysis will be lost

Idea
Store many images that sample the visualization parameter space
In less than the space needed for a single scientific data dump
Ex: Cameras, operations, parameters

Post-processing exploration of image database

‘ Create an image database from in situ analysis ‘

Peta
1016 1019 10N 12 10N 15 10N18
Image Storage & Operations Operations Operations
speed network speed speed speed

speed



Event responses

-

Upload visualization pipeline state | Browse... | MPAS.pvsm

Pipeline
Earth core

— Color by

& o.5,0.5, 05

Simulation data
— Simulation parameters

& Temperature & Salinity O Density
O Pressure O 0.5,0.5,0.5

Simulation timesteps 102
Output frequency 10
CellDataToPointData
e Contour
—Parameters
Contour by Temperature ]
Contour values 5.0,10.0,15.0,20.0,25.0
— Color by
& Temperature & Salinity O Density
O Pressure O 0.5, 0.5, 0.5
e Contour
— Parameters
Contour by Salinity :
Contour values 34.0,34.5,35.0,35.5,36.0
— Color by

\

Set camera and
operator parameters 1o
visualize




Use Case — Traditional interactive exploration

ParaView Cinema
¢ I Reader J LQJ

® OO0

@ Earth core

@ Contour by temperature @
Qt=10.0 Csalinity %]
Qt=25.0

@ Contour by salinity (+]

® Time 1.0 K <« » M

«» Phi 3000 K <« » ¥

t Theta 1150 1« « » »l

&

In this video:
Processing, combining and showing images from the image database
No raw scientific data is read, no geometry is created during viewing



Conclusions

= Joint effort between CS areas and science
communities

= Tools to detection, characterize and respond
— Support mapping up and down the stack
= Nhitp://datascience.lanl.gov
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MPAS Ocean initial
conditions without smoothing




