
Form 836 (7/06)

LA-UR-
Approved for public release;
distribution is unlimited.

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the
published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher’s right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its technical correctness.

Title:

Author(s):

Intended for:

11-11980

PISTON : A portable cross-platform framework for
data-parallel visualization operators

Christopher Sewell
Li-ta Lo
James Ahrens

Workshop on Ultrascale Visualization at the International
Conference for High-Performance Computing, Networking,
Storage, and Analysis. November 2011. Seattle, Washington.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON : A portable cross-platform framework for data-

parallel visualization operators

Li-Ta Lo

Chris Sewell

James Ahrens

Los Alamos National Laboratory

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Outline

● Motivation

– Portability and performance of visualization and analysis operations on

 current and next-generation supercomputers

● Introduction to data-parallel programming and the Thrust library

● Implementation of visualization operators

– Isosurface, Cut Surfaces, Threshold

● Current target architectures and performance

– CUDA/Nvidia GPU & OpenMP/Multi-core machines

● Future work

● New targets – OpenCL/AMD, OpenMP/BlueGene

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Motivation / Related Work

● Current production visualization

software does not take full

advantage of acceleration hardware

and/or multi-core architecture

● Vtk, ParaView, Visit

● Research on accelerating

visualization operations are mostly

hardware-specific; few were

integrated in visualization software

● CUDA SDK demo

● Dyken, Ziegler, “High-speed

Marching Cubes using Histogram

Pyramids”, Eurographics 2007.

● Most work in portability and

abstraction layers/languages

are not ready (yet)...

● Scout, DAX, Liszt

● Can we accelerate our

visualization software with

something that is based on

“proven” technology and

portable across different

architectures?

● Data parallel libraries

– NVidia Thrust library

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Brief Introduction to Data-Parallel Programming

and Thrust

● What is data parallelism?

● When independent processors

performs the same task on

different pieces of data

● Due to the massive data sizes we

expect to be simulating we expect

data parallelism to be a good way

to exploit parallelism on current

and next generation architectures

● “The data parallel bible” -

Blelloch, “Vector Models for Data

Parallel Computing”

● What is Thrust?

● Thrust is a NVidia C++ template

library for CUDA. It can also target

OpenMP and we are creating new

backends to target other

architectures

● Thrust allows you to program using

an interface similar the C++

Standard Template Library (STL)

● Most of the STL algorithms in Thrust

are data parallel

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Videos of PISTON in Action

pistonLarge.mp4
pistonOMP.mp4
pistonCUDA.mp4

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Brief Introduction to Data-Parallel Programming

and Thrust

● Why use Thrust instead of CUDA?

● Thrust offers a data parallel abstraction. We believe code written in this

abstraction will be portable to future systems.

● Specifically, in this talk we will show the same algorithm written in Thrust

running on NVidia GPUs and multi-core CPUs.

● What data structures does Thrust provide?

● Currently Thrust provides thrust::host_vector and thrust::device_vector,

which are analogous to std::vector in the STL and reside in the host/device

memory.

● These vector data structures simplify memory management and

transferring data between the host and device.

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Brief Introduction to Data-Parallel Programming

and Thrust

What algorithms does Thrust provide?

● sorting: thrust::sort and thrust::sort_by_key

– 4 5 6 8 7 2 1 3 :sort: 1 2 3 4 5 6 7 8

● transformations: thrust::transform

–Any unary and binary operation

–4 5 6 8 7 2 1 3 :transform plus 1: 5 6 7 9 8 3 2 4

● reductions: thrust::reduce and thrust::transform_reduce

–4 5 6 8 7 2 1 3 :sum reduce: 36

● scans: thrust::inclusive_scan, thrust::exclusive_scan, thrust::transform_inclusive_scan, etc.

–4 5 6 7 8 2 1 3 :sum scan: 4 9 15 22 30 32 33 36

● Binary search, stream compaction, scatter/gather, etc.

● Work with user defined data types and operators/functors too

Challenge: Write operators in terms of

these primitives only

Reward: Efficient, portable code

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Isosurface with Marching Cube – the Naive Way

● Classify all cells by transform

● Use copy_if to compact valid cells.

● For each valid cell, generate same

number of geometries with flags.

● Use copy_if to do stream compaction

on vertices.

● This approach is too slow, more than

50% of time was spent moving huge

amount of data in global memory.

● Can we avoid calling copy_if and

eliminate global memory movement?

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Isosurface with Marching Cube – Optimization

● Inspired by HistoPyramid

● The filter is essentially a mapping

from input cell id to output vertex id

● Is there a “reverse” mapping?

● If there is a reverse mapping, the

filter can be very “lazy”

● Given an output vertex id, we only

apply operations on the cell that

would generate the vertex

● Actually for a range of output vertex

ids

0 1 2 5 4 3 6

0

1

2 3
4

5

6

7

8

9

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Cut Surfaces

● All the vertices generated by

marching cube are on the cell edges.

● They have only one degree of

freedom, not three.

● 1D interpolation only, no need to do

trilinear interpolation on scalar field.

● Two scalar fields, one for generating

geometry (cut surface) the other for

scalar interpolation.

● Less than 10 LOC change, negligible

performance impact to isosurface.

r

s
t

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Threshold

● Again, very similar to marching

cube

● Classify cells, stream compact

valid cells and generate

geometries for valid cells.

● Optimization: what does the

“inside” of a brick look like? Do

we even care?

● Additional passes of cell

classification and stream

compaction to remove “interior

cells”

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON CUDA Backend Performance

● Limited performance degradation

relative to native CUDA optimized

code

● PISTON

● Limited use of shared/texture memory

due to portability

● NVIDIA CUDA Demo

● Works only with data set with power

of 2 per dimension, allowing use of

shift instead of integer division

● Memory inefficient; runs out of

texture/global memory when data

size is larger than 512^3

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON OpenMP Backend Performance

● Compile time #define/-D switches

between backends

● Wrote our own parallel scan

implementation for Thrust OpenMP

backend

● Significantly better performance

than both single process and

parallel VTK

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON OpenMP Scaling Performance

● Significantly better scalability in

term of # of cores than parallel

VTK

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON Compute and Render Results

● Compute and render results

● CUDA and OpenMP backends

● CUDA/OpenGL interop

● Platform specific, non-portable

● Output geometries directly into

OpenGL VBO

● Avoid round trip between device and

host memory movement

● Vastly improves rendering

performance and reduces memory

footprint

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

PISTON Visualization Operators

● Three fundamental visualization

operations

● All based on the same basic

data-parallelism

● Very similar performance

characteristics

● Cut plane is the fastest since it

generates 2D planes

● Threshold comes next because

there is no interpolation for

scalar nor position

● Isosurface is actually the most

complicated operator

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Work in Progress: OpenCL Backend

● Motivation: Support for compiling visualization operators for a wide variety

of additional GPU and CPU architectures

● Challenges

● OpenCL is not built into Thrust

● OpenCL is based on C99, making support for C++ features difficult

● OpenCL compiles kernels from strings at run-time rather than from source files

● Current Approach

● Pre-processor extracts operators from user-written functors and outputs them to .cl files

● At run-time, our Thrust-like backend combines these user-derived .cl files with its own native

OpenCL implementations of data-parallel primitives into kernel strings

● Our Thrust-like backend uses run-time type information to handle simple templating and

functor calls, substituting for key words in string

● Kernel source only needs to be compiled once for each time it appears in code

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Work in Progress: OpenCL Backend

● Preliminary Results

● Successfully implemented isosurface and cut plane operators in OpenCL

with code almost identical to that used for the Thrust-based CUDA and

OpenMP backends

● With interop on AMD FirePro V7800 (1440 streams), we can run at about

6 fps for 256^3 data set (2 fps without interop)

● Next Steps

● Improve efficiency of implementation

● Integrate our OpenCL backend more fully into Thrust

● Implement threshold operator

● Run OpenCL on other platforms (CPUs, etc.)

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Future Work

● Open source release

● Coming soon, last stage of approval process

● New targets

● OpenCL/AMD, OpenMP/BlueGene

● More operators

● Integration with ParaView

● Kitware is working on an experimental version

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

Acknowledgments and Resources

● The work on PISTON was funded by the NNSA ASC CCSE Program,

Thuc Hoang, national program manager, Bob Webster and David

Daniel, Los Alamos program managers

● For more information, see

 http://viz.lanl.gov/projects/PISTON.html

● See our demo at the Los Alamos booth!

● Ollie Lo will present a talk on PISTON at the NVIDIA booth at 4:30 on

Tuesday

http://viz.lanl.gov/projects/PISTON.html
http://viz.lanl.gov/projects/PISTON.html

Isosurface with Marching Cube – Optimization

● Classify each cell, generate valid flags

and # of output vertices

● Enumerate the number of valid cells by in-

scan over valid flags

● Counting [0..# of valid cells)

● Binary search of the counts in the in-scan.

This gives the global id of valid cells

● Use the global id of valid cells to fetch

the # of output vertices

● Ex-scan on # of output vertices gives

range of vertices generated by each

valid cell

● The total # of vertices is the sum of the

last elements.

0 1 2 5 4 3 6

0

1

2 3
4

5

6

7

8

9

T F T F T F T

2 0 2 0 2 0 4

1 1 2 3 3 2 4

0 1 2 3

0 2 4 6 0

2 2 2 4

0 2 4 6

Total # of vertices = 10

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

OpenCL Backend

● Motivation: Support for compiling visualization operators for a wide

variety of additional GPU and CPU architectures

● Challenges

● OpenCL is not built into Thrust, requiring us to create a new backend from

scratch

● OpenCL is based on C99, making it difficult to support

C++ features (templates, functors, iterators, etc.) integral to Thrust

● OpenCL compiles kernels from strings in the host language at run-time

rather than directly compiling C code embedded in the host language at

compile-time

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

OpenCL Backend: Prototype Design

● PISTON provides a Thrust-like library of include files (“lathrust”) that implement host/device vectors

that can read and write data to the device using OpenCL, and OpenCL-native code for basic data-

parallel primitives (scan, transform, etc.) in .cl files, with keywords as placeholders for calls to user-

defined functions

● User writes an operator in C++, making calls to lathrust wrappers for the data-parallel primitives,

optionally passing user-defined functors as arguments

● PISTON pre-processor extracts operators (which must be C99-compliant) from user-defined functors

and outputs them to .cl files as functions named according to the class name of their functor

● At run-time, PISTON backend wrapper functions create a string by concatenating the contents of the

data-parallel primitive .cl file and the pre-processor-generated .cl file, replace key words for user-

defined function calls with the appropriate function name (based on the run-time type information

of the functor argument) and key words for data types with actual data types (based on the

templated instantiation data types), and make calls to OpenCL to build and execute the kernel

OpenCL Backend: Simple Example

transform.cl

__kernel void transform(__global T_TYPE* input, __global T_TYPE* output)
{
 unsigned int i = get_global_id(0);
 output[i] = USER_OPERATOR(input[i]);
}

util_math.cl

...
__inline__ float lerp(float a, float b, float t)
{
 return a + t*(b-a);
}

myOperator.inl

template <typename InputIterator>
class myOperator
{
public:
 typedef typename std::iterator_traits<InputIterator>::value_type value_type;
 InputIterator input, temp, output; int n;
 myOperator(InputIterator input, int n) : input(input), n(n) { }

 void operator()()
 {
 lathrust::transform(input.begin(), temp.begin(), n, new doubleIt());

 lathrust::transform(temp.begin(), output.begin(), n, new tripleIt());
 }

 struct doubleIt : public lathrust::unary_function
 {
 doubleIt() { }

 value_type operator()(value_type value)
 {
 return 2*value;
 }
 };

 struct tripleIt : public lathrust::unary_function
 {
 tripleIt() { }

 value_type operator()(value_type value)
 {
 return 3*value;
 }
 };
};

user.cl

value_type doubleIt()(value_type value)
{
 return 2*value;
}

value_type tripleIt()(value_type value)
{
 return 3*value;
}

Pre-processor

kernel_source

“...

__inline__ float lerp(float a, float b, float t)
{
 return a + t*(b-a);
}

int doubleIt()(int value)
{
 return 2*value;
}

__kernel void transform(__global int* input, __global int* output)
{
 unsigned int i = get_global_id(0);
 output[i] = doubleIt(input[i]);
}

”

kernel_source

“...

__inline__ float lerp(float a, float b, float t)
{
 return a + t*(b-a);
}

int tripleIt()(int value)
{
 return 3*value;
}

__kernel void transform(__global int* input, __global int* output)
{
 unsigned int i = get_global_id(0);
 output[i] = tripleIt(input[i]);
}

”

 Compiled Kernel

 Compiled Kernel

lathrust backend

lathrust backend

clCreateProgramWithSource; clBuildProgram

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA LA-UR-11-11980

OpenCL Backend: Advanced Topics

● The PISTON backend can provide the OpenCL function generated from the user-

defined functor with access to the functor data by packaging the functor's data fields

in a struct and passing it to the OpenCL function

● Large functor data fields are passed separately, and the backend replaces keywords

in the OpenCL data-parallel primitive implementations to extend the set of

parameters passed to the kernel and on to the user-defined function

● Permutation iterators are similarly implemented by passing an additional field to the

kernel and replacing keywords in the OpenCL code with indexing into the

permutation field

● The kernel source code is the same between executions of the same line of host code

(even though the data it is sent may differ), so kernel compilation can be

performance once at the beginning for each call of an lathrust wrapper, and the

compiled kernel reused whenever that call is executed

OpenCL Backend: Functor Example

transform.cl

__kernel void transform(__global T_TYPE* input, __global T_TYPE* output,
 __global void* vstate FIELD_PARAMETERS)
{
 unsigned int i = get_global_id(0);
 output[i] = USER_OPERATOR(i, input[i], vstate PASS_FIELDS);
}

util_math.cl

...
__inline__ float lerp(float a, float b, float t)
{
 return a + t*(b-a);
}

myOperator.inl

template <typename InputIterator>
class myOperator
{
public:
 typedef typename std::iterator_traits<InputIterator>::value_type value_type;
 InputIterator input, InputIterator offsets, output; int n; value_type scaleFactor;
 myOperator(InputIterator input, InputIterator offsets, value_type scaleFactor, int n) :
 input(input), offsets(offsets), scaleFactor(scaleFactor), n(n) { }

 void operator()()
 {
 lathrust::transform(input.begin(), output.begin(), n, new offsetAndScale(scaleFactor, offsets));
 }

 struct offsetAndScale : public lathrust::unary_function
 {
 typedef struct offsetAndScaleData : public lathrust::functorData
 {
 value_type scaleFactor;
 } OffsetAndScaleData;
 virtual int getStateSize() { return (sizeof(OffsetAndScaleData)); }

 offsetAndScale(value_type scaleFactor, InputIterator offsets)
 {
 OffsetAndScaleData* dstate = new OffsetAndScaleData;
 dstate->scaleFactor = scaleFactor;
 state = dstate;
 addField(*offsets);
 }

 value_type operator()(int index, value_type value, OffsetAndScaleData* state,
 value_type* offsets)
 {
 return ((state->scaleFactor)*(value + offsets[index]));
 }
 };
};

user.cl

value_type offsetAndScale()(int index, value_type value, OffsetAndScaleData* state,
 value_type* offsets)
{
 return ((state->scaleFactor)*(value + offsets[index]));
}

Pre-processor

 Compiled Kernel

lathrust backend

clCreateProgramWithSource; clBuildProgram

kernel_source

“...

__inline__ float lerp(float a, float b, float t)
{
 return a + t*(b-a);
}

int offsetAndScale()(int index, int value, OffsetAndScaleData* state, int* offsets)
{
 return ((state->scaleFactor)*(value + offsets[index]));
}

__kernel void transform(__global int* input, __global int* output, __global void* vstate,
 __global void* field1)
{
 unsigned int i = get_global_id(0);
 output[i] = offsetAndScale(i, input[i], vstate, field1);
}

”

	LAURCoverSC
	pistonslides

